Removal of Isolated Singularities of Generalized Quasiisometries on Riemannian Manifolds

A bstract For mappings with unbounded characteristics, we prove theorems on removal of isolated singularities on Riemannian manifolds. We prove that if a mapping satisfies certain prototype inequality of absolute values and its quasiconformity characteristic has a majorant of finite average oscillat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.250 (4), p.611-621
Hauptverfasser: Ilyutko, D. P., Sevostyanov, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract For mappings with unbounded characteristics, we prove theorems on removal of isolated singularities on Riemannian manifolds. We prove that if a mapping satisfies certain prototype inequality of absolute values and its quasiconformity characteristic has a majorant of finite average oscillation at a fixed singular point, then it has a limit at that point.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-020-05031-5