Ekeland’s variational principle in weak and strong systems of arithmetic
We analyze Ekeland’s variational principle in the context of reverse mathematics. We find that that the full variational principle is equivalent to Π 1 1 - CA 0 , a strong theory of second-order arithmetic, while natural restrictions (e.g. to compact spaces or to continuous functions) yield statemen...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2020-11, Vol.26 (5), Article 68 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze Ekeland’s variational principle in the context of reverse mathematics. We find that that the full variational principle is equivalent to
Π
1
1
-
CA
0
, a strong theory of second-order arithmetic, while natural restrictions (e.g. to compact spaces or to continuous functions) yield statements equivalent to weak König’s lemma (
WKL
0
) and to arithmetical comprehension (
ACA
0
). We also find that the localized version of Ekeland’s variational principle is equivalent to
Π
1
1
-
CA
0
, even when restricted to continuous functions. This is a rare example of a statement about continuous functions having great logical strength. |
---|---|
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-020-00597-z |