Ekeland’s variational principle in weak and strong systems of arithmetic

We analyze Ekeland’s variational principle in the context of reverse mathematics. We find that that the full variational principle is equivalent to Π 1 1 - CA 0 , a strong theory of second-order arithmetic, while natural restrictions (e.g. to compact spaces or to continuous functions) yield statemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2020-11, Vol.26 (5), Article 68
Hauptverfasser: Fernández-Duque, David, Shafer, Paul, Yokoyama, Keita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze Ekeland’s variational principle in the context of reverse mathematics. We find that that the full variational principle is equivalent to Π 1 1 - CA 0 , a strong theory of second-order arithmetic, while natural restrictions (e.g. to compact spaces or to continuous functions) yield statements equivalent to weak König’s lemma ( WKL 0 ) and to arithmetical comprehension ( ACA 0 ). We also find that the localized version of Ekeland’s variational principle is equivalent to Π 1 1 - CA 0 , even when restricted to continuous functions. This is a rare example of a statement about continuous functions having great logical strength.
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-020-00597-z