Sol–gel hybrid films based on organosilanes with long alkyl chains
In this paper, we report the synthesis of different silica materials via the acid-catalyzed sol–gel process at room temperature (25°C), using silane precursors with various alkyl chains (dimethyl, octyl and/or hexadecyl), in order to obtain thin films with anti-reflective and hydrophobic properties....
Gespeichert in:
Veröffentlicht in: | JCT research 2020-09, Vol.17 (5), p.1389-1399 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we report the synthesis of different silica materials via the acid-catalyzed sol–gel process at room temperature (25°C), using silane precursors with various alkyl chains (dimethyl, octyl and/or hexadecyl), in order to obtain thin films with anti-reflective and hydrophobic properties. Chemical, optical and structural properties of obtained silica materials were thoroughly characterized with various techniques such as FTIR and UV–Vis spectroscopy, AFM analysis, ellipsometric measurements, ESEM and TEM microscopy. Wettability of thin films was evaluated by water contact angle measurements. FTIR spectra of silica materials revealed that the intensity of the Si–O–Si characteristic bands varies depending on the precursor type. From AFM results, we found that the obtained films present a different microstructure as a function of the silica sol formulations. The hydrophobic character of the thin films increases with increasing the length of the hydrophobic chains following the order: dimethyl |
---|---|
ISSN: | 1547-0091 1935-3804 2168-8028 |
DOI: | 10.1007/s11998-020-00359-8 |