Diffusion in nanopores: correlating experimental findings with “first-principles” predictions
Measurement of molecular diffusion in nanoporous host materials, which are typically inhomogeneous and anisotropic, often involves an intricate web of factors and relations to be taken into account since the associated diffusivities are a function of the diffusion path of the guest molecules during...
Gespeichert in:
Veröffentlicht in: | Adsorption : journal of the International Adsorption Society 2020-10, Vol.26 (7), p.1001-1013 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Measurement of molecular diffusion in nanoporous host materials, which are typically inhomogeneous and anisotropic, often involves an intricate web of factors and relations to be taken into account since the associated diffusivities are a function of the diffusion path of the guest molecules during a given observation time. Depending on the observation time, therefore, the result of the experimental measurement can point to completely different conclusions about the underlying diffusion phenomena. The risk of misinterpretation of the experimental data, by correlating them with irrelevant phenomena, may be reduced if there is an option to compare the data with the results of totally independent measurements. The present communication addresses this issue with reference to the particular potentials of pulsed field gradient NMR and microimaging by infrared microscopy as techniques of microscopic diffusion measurement. |
---|---|
ISSN: | 0929-5607 1572-8757 |
DOI: | 10.1007/s10450-020-00237-0 |