On Elements of Finite Semigroups of Order-Preserving and Decreasing Transformations
For n ∈ N , let C n be the semigroup of all order-preserving and decreasing transformations on X n = { 1 , … , n } , under its natural order, and let N ( C n ) be the set of all nilpotent elements of C n and let Fix ( α ) = { x ∈ X n : x α = x } for any transformation α . An element a of a finite se...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2020-09, Vol.43 (5), p.3863-3870 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For
n
∈
N
, let
C
n
be the semigroup of all order-preserving and decreasing transformations on
X
n
=
{
1
,
…
,
n
}
, under its natural order, and let
N
(
C
n
)
be the set of all nilpotent elements of
C
n
and let
Fix
(
α
)
=
{
x
∈
X
n
:
x
α
=
x
}
for any transformation
α
. An element
a
of a finite semigroup is called
m
-potent (
m
-nilpotent) element if
a
m
+
1
=
a
m
(
a
m
=
0
) and
a
,
a
2
,
…
,
a
m
are distinct. In this paper, we obtain a formulae for the number of
m
-nilpotent elements and so the number of
m
-potent elements in
N
(
C
n
)
for
1
≤
m
≤
n
-
1
. Moreover, for any subset
Y
of
X
n
, we obtain a formulae for the number of
m
-potent elements of
C
n
,
Y
=
{
α
∈
C
n
:
Fix
(
α
)
=
Y
}
. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-020-00899-7 |