Combinatorial Designs, Difference Sets, and Bent Functions as Perfect Colorings of Graphs and Multigraphs

We prove that (1): the characteristic function of each independent set in each regular graph attaining the Delsarte–Hoffman bound is a perfect coloring; (2): each transversal in a uniform regular hypergraph is an independent set in the vertex adjacency multigraph of a hypergraph attaining the Delsar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian mathematical journal 2020-09, Vol.61 (5), p.867-877
Hauptverfasser: Potapov, V. N., Avgustinovich, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that (1): the characteristic function of each independent set in each regular graph attaining the Delsarte–Hoffman bound is a perfect coloring; (2): each transversal in a uniform regular hypergraph is an independent set in the vertex adjacency multigraph of a hypergraph attaining the Delsarte–Hoffman bound for this multigraph; and (3): the combinatorial designs with parameters - and their  -analogs, difference sets, Hadamard matrices, and bent functions are equivalent to perfect colorings of some graphs of multigraphs, in particular, the Johnson graph for - -designs and the Grassmann graph for bent functions.
ISSN:0037-4466
1573-9260
DOI:10.1134/S0037446620050109