Combinatorial Designs, Difference Sets, and Bent Functions as Perfect Colorings of Graphs and Multigraphs
We prove that (1): the characteristic function of each independent set in each regular graph attaining the Delsarte–Hoffman bound is a perfect coloring; (2): each transversal in a uniform regular hypergraph is an independent set in the vertex adjacency multigraph of a hypergraph attaining the Delsar...
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2020-09, Vol.61 (5), p.867-877 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that (1): the characteristic function of each independent set in each regular graph attaining the Delsarte–Hoffman bound is a perfect coloring; (2): each transversal in a uniform regular hypergraph is an independent set in the vertex adjacency multigraph of a hypergraph attaining the Delsarte–Hoffman bound for this multigraph; and (3): the combinatorial designs with parameters
-
and their
-analogs, difference sets, Hadamard matrices, and bent functions are equivalent to perfect colorings of some graphs of multigraphs, in particular, the Johnson graph
for
-
-designs and the Grassmann graph
for bent functions. |
---|---|
ISSN: | 0037-4466 1573-9260 |
DOI: | 10.1134/S0037446620050109 |