A stable cardinality distance for topological classification
This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams are multisets summarizing the connectedness and holes of given data. A new distance on the space of persistence diagrams generates relevant input fea...
Gespeichert in:
Veröffentlicht in: | Advances in data analysis and classification 2020-09, Vol.14 (3), p.611-628 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 628 |
---|---|
container_issue | 3 |
container_start_page | 611 |
container_title | Advances in data analysis and classification |
container_volume | 14 |
creator | Maroulas, Vasileios Micucci, Cassie Putman Spannaus, Adam |
description | This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams are multisets summarizing the connectedness and holes of given data. A new distance on the space of persistence diagrams generates relevant input features for a classification algorithm for materials science data. This distance measures the similarity of persistence diagrams using the cost of matching points and a regularization term corresponding to cardinality differences between diagrams. Establishing stability properties of this distance provides theoretical justification for the use of the distance in comparisons of such diagrams. The classification scheme succeeds in determining the crystal structure of materials on noisy and sparse data retrieved from synthetic atom probe tomography experiments. |
doi_str_mv | 10.1007/s11634-019-00378-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450327374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450327374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-21a5209163de10db782045c10151fcbabd6f4089b20427069c1ddbdee3e5d7193</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19F782hacDOILxhwo-uQJumQoTZj0lnMvzda0Z2re7icczh8hFwiXCOAusmINRcUsKUAXDWUH5EFNjWjkkt5_KuFOiVnOW8BahAgF-R2VeXJdIOvrEkujGYI06FyoTxH66s-pmqKuzjETbBmqOxgcg590VOI4zk56c2Q_cXPXZK3h_vXuye6fnl8vlutqeU1myhDIxm0ZaHzCK5TDQMhLQJK7G1nOlf3Apq2K2-moG4tOtc577mXTmHLl-Rq7t2l-LH3edLbuE9la9ZMSOBMcSWKi80um2LOyfd6l8K7SQeNoL8o6ZmSLpT0NyXNS4jPoVzM48anv-p_Up_ozWmV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450327374</pqid></control><display><type>article</type><title>A stable cardinality distance for topological classification</title><source>Springer Nature - Complete Springer Journals</source><creator>Maroulas, Vasileios ; Micucci, Cassie Putman ; Spannaus, Adam</creator><creatorcontrib>Maroulas, Vasileios ; Micucci, Cassie Putman ; Spannaus, Adam</creatorcontrib><description>This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams are multisets summarizing the connectedness and holes of given data. A new distance on the space of persistence diagrams generates relevant input features for a classification algorithm for materials science data. This distance measures the similarity of persistence diagrams using the cost of matching points and a regularization term corresponding to cardinality differences between diagrams. Establishing stability properties of this distance provides theoretical justification for the use of the distance in comparisons of such diagrams. The classification scheme succeeds in determining the crystal structure of materials on noisy and sparse data retrieved from synthetic atom probe tomography experiments.</description><identifier>ISSN: 1862-5347</identifier><identifier>EISSN: 1862-5355</identifier><identifier>DOI: 10.1007/s11634-019-00378-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Chemistry and Earth Sciences ; Classification ; Computer Science ; Crystal structure ; Data Mining and Knowledge Discovery ; Distance measurement ; Economics ; Finance ; Health Sciences ; Humanities ; Insurance ; Law ; Management ; Materials science ; Mathematics and Statistics ; Medicine ; Physics ; Regular Article ; Regularization ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences ; Topology</subject><ispartof>Advances in data analysis and classification, 2020-09, Vol.14 (3), p.611-628</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-21a5209163de10db782045c10151fcbabd6f4089b20427069c1ddbdee3e5d7193</citedby><cites>FETCH-LOGICAL-c362t-21a5209163de10db782045c10151fcbabd6f4089b20427069c1ddbdee3e5d7193</cites><orcidid>0000-0002-3412-6766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11634-019-00378-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11634-019-00378-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Maroulas, Vasileios</creatorcontrib><creatorcontrib>Micucci, Cassie Putman</creatorcontrib><creatorcontrib>Spannaus, Adam</creatorcontrib><title>A stable cardinality distance for topological classification</title><title>Advances in data analysis and classification</title><addtitle>Adv Data Anal Classif</addtitle><description>This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams are multisets summarizing the connectedness and holes of given data. A new distance on the space of persistence diagrams generates relevant input features for a classification algorithm for materials science data. This distance measures the similarity of persistence diagrams using the cost of matching points and a regularization term corresponding to cardinality differences between diagrams. Establishing stability properties of this distance provides theoretical justification for the use of the distance in comparisons of such diagrams. The classification scheme succeeds in determining the crystal structure of materials on noisy and sparse data retrieved from synthetic atom probe tomography experiments.</description><subject>Algorithms</subject><subject>Chemistry and Earth Sciences</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Crystal structure</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Distance measurement</subject><subject>Economics</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Law</subject><subject>Management</subject><subject>Materials science</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Physics</subject><subject>Regular Article</subject><subject>Regularization</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><subject>Topology</subject><issn>1862-5347</issn><issn>1862-5355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19F782hacDOILxhwo-uQJumQoTZj0lnMvzda0Z2re7icczh8hFwiXCOAusmINRcUsKUAXDWUH5EFNjWjkkt5_KuFOiVnOW8BahAgF-R2VeXJdIOvrEkujGYI06FyoTxH66s-pmqKuzjETbBmqOxgcg590VOI4zk56c2Q_cXPXZK3h_vXuye6fnl8vlutqeU1myhDIxm0ZaHzCK5TDQMhLQJK7G1nOlf3Apq2K2-moG4tOtc577mXTmHLl-Rq7t2l-LH3edLbuE9la9ZMSOBMcSWKi80um2LOyfd6l8K7SQeNoL8o6ZmSLpT0NyXNS4jPoVzM48anv-p_Up_ozWmV</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Maroulas, Vasileios</creator><creator>Micucci, Cassie Putman</creator><creator>Spannaus, Adam</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3412-6766</orcidid></search><sort><creationdate>20200901</creationdate><title>A stable cardinality distance for topological classification</title><author>Maroulas, Vasileios ; Micucci, Cassie Putman ; Spannaus, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-21a5209163de10db782045c10151fcbabd6f4089b20427069c1ddbdee3e5d7193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Chemistry and Earth Sciences</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Crystal structure</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Distance measurement</topic><topic>Economics</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Law</topic><topic>Management</topic><topic>Materials science</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Physics</topic><topic>Regular Article</topic><topic>Regularization</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maroulas, Vasileios</creatorcontrib><creatorcontrib>Micucci, Cassie Putman</creatorcontrib><creatorcontrib>Spannaus, Adam</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in data analysis and classification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maroulas, Vasileios</au><au>Micucci, Cassie Putman</au><au>Spannaus, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stable cardinality distance for topological classification</atitle><jtitle>Advances in data analysis and classification</jtitle><stitle>Adv Data Anal Classif</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>14</volume><issue>3</issue><spage>611</spage><epage>628</epage><pages>611-628</pages><issn>1862-5347</issn><eissn>1862-5355</eissn><abstract>This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams are multisets summarizing the connectedness and holes of given data. A new distance on the space of persistence diagrams generates relevant input features for a classification algorithm for materials science data. This distance measures the similarity of persistence diagrams using the cost of matching points and a regularization term corresponding to cardinality differences between diagrams. Establishing stability properties of this distance provides theoretical justification for the use of the distance in comparisons of such diagrams. The classification scheme succeeds in determining the crystal structure of materials on noisy and sparse data retrieved from synthetic atom probe tomography experiments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11634-019-00378-3</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3412-6766</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-5347 |
ispartof | Advances in data analysis and classification, 2020-09, Vol.14 (3), p.611-628 |
issn | 1862-5347 1862-5355 |
language | eng |
recordid | cdi_proquest_journals_2450327374 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Chemistry and Earth Sciences Classification Computer Science Crystal structure Data Mining and Knowledge Discovery Distance measurement Economics Finance Health Sciences Humanities Insurance Law Management Materials science Mathematics and Statistics Medicine Physics Regular Article Regularization Statistical Theory and Methods Statistics Statistics for Business Statistics for Engineering Statistics for Life Sciences Statistics for Social Sciences Topology |
title | A stable cardinality distance for topological classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A21%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stable%20cardinality%20distance%20for%20topological%20classification&rft.jtitle=Advances%20in%20data%20analysis%20and%20classification&rft.au=Maroulas,%20Vasileios&rft.date=2020-09-01&rft.volume=14&rft.issue=3&rft.spage=611&rft.epage=628&rft.pages=611-628&rft.issn=1862-5347&rft.eissn=1862-5355&rft_id=info:doi/10.1007/s11634-019-00378-3&rft_dat=%3Cproquest_cross%3E2450327374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450327374&rft_id=info:pmid/&rfr_iscdi=true |