A stable cardinality distance for topological classification

This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams are multisets summarizing the connectedness and holes of given data. A new distance on the space of persistence diagrams generates relevant input fea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in data analysis and classification 2020-09, Vol.14 (3), p.611-628
Hauptverfasser: Maroulas, Vasileios, Micucci, Cassie Putman, Spannaus, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 628
container_issue 3
container_start_page 611
container_title Advances in data analysis and classification
container_volume 14
creator Maroulas, Vasileios
Micucci, Cassie Putman
Spannaus, Adam
description This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams are multisets summarizing the connectedness and holes of given data. A new distance on the space of persistence diagrams generates relevant input features for a classification algorithm for materials science data. This distance measures the similarity of persistence diagrams using the cost of matching points and a regularization term corresponding to cardinality differences between diagrams. Establishing stability properties of this distance provides theoretical justification for the use of the distance in comparisons of such diagrams. The classification scheme succeeds in determining the crystal structure of materials on noisy and sparse data retrieved from synthetic atom probe tomography experiments.
doi_str_mv 10.1007/s11634-019-00378-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450327374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450327374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-21a5209163de10db782045c10151fcbabd6f4089b20427069c1ddbdee3e5d7193</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19F782hacDOILxhwo-uQJumQoTZj0lnMvzda0Z2re7icczh8hFwiXCOAusmINRcUsKUAXDWUH5EFNjWjkkt5_KuFOiVnOW8BahAgF-R2VeXJdIOvrEkujGYI06FyoTxH66s-pmqKuzjETbBmqOxgcg590VOI4zk56c2Q_cXPXZK3h_vXuye6fnl8vlutqeU1myhDIxm0ZaHzCK5TDQMhLQJK7G1nOlf3Apq2K2-moG4tOtc577mXTmHLl-Rq7t2l-LH3edLbuE9la9ZMSOBMcSWKi80um2LOyfd6l8K7SQeNoL8o6ZmSLpT0NyXNS4jPoVzM48anv-p_Up_ozWmV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450327374</pqid></control><display><type>article</type><title>A stable cardinality distance for topological classification</title><source>Springer Nature - Complete Springer Journals</source><creator>Maroulas, Vasileios ; Micucci, Cassie Putman ; Spannaus, Adam</creator><creatorcontrib>Maroulas, Vasileios ; Micucci, Cassie Putman ; Spannaus, Adam</creatorcontrib><description>This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams are multisets summarizing the connectedness and holes of given data. A new distance on the space of persistence diagrams generates relevant input features for a classification algorithm for materials science data. This distance measures the similarity of persistence diagrams using the cost of matching points and a regularization term corresponding to cardinality differences between diagrams. Establishing stability properties of this distance provides theoretical justification for the use of the distance in comparisons of such diagrams. The classification scheme succeeds in determining the crystal structure of materials on noisy and sparse data retrieved from synthetic atom probe tomography experiments.</description><identifier>ISSN: 1862-5347</identifier><identifier>EISSN: 1862-5355</identifier><identifier>DOI: 10.1007/s11634-019-00378-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Chemistry and Earth Sciences ; Classification ; Computer Science ; Crystal structure ; Data Mining and Knowledge Discovery ; Distance measurement ; Economics ; Finance ; Health Sciences ; Humanities ; Insurance ; Law ; Management ; Materials science ; Mathematics and Statistics ; Medicine ; Physics ; Regular Article ; Regularization ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences ; Topology</subject><ispartof>Advances in data analysis and classification, 2020-09, Vol.14 (3), p.611-628</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-21a5209163de10db782045c10151fcbabd6f4089b20427069c1ddbdee3e5d7193</citedby><cites>FETCH-LOGICAL-c362t-21a5209163de10db782045c10151fcbabd6f4089b20427069c1ddbdee3e5d7193</cites><orcidid>0000-0002-3412-6766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11634-019-00378-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11634-019-00378-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Maroulas, Vasileios</creatorcontrib><creatorcontrib>Micucci, Cassie Putman</creatorcontrib><creatorcontrib>Spannaus, Adam</creatorcontrib><title>A stable cardinality distance for topological classification</title><title>Advances in data analysis and classification</title><addtitle>Adv Data Anal Classif</addtitle><description>This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams are multisets summarizing the connectedness and holes of given data. A new distance on the space of persistence diagrams generates relevant input features for a classification algorithm for materials science data. This distance measures the similarity of persistence diagrams using the cost of matching points and a regularization term corresponding to cardinality differences between diagrams. Establishing stability properties of this distance provides theoretical justification for the use of the distance in comparisons of such diagrams. The classification scheme succeeds in determining the crystal structure of materials on noisy and sparse data retrieved from synthetic atom probe tomography experiments.</description><subject>Algorithms</subject><subject>Chemistry and Earth Sciences</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Crystal structure</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Distance measurement</subject><subject>Economics</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Law</subject><subject>Management</subject><subject>Materials science</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Physics</subject><subject>Regular Article</subject><subject>Regularization</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><subject>Topology</subject><issn>1862-5347</issn><issn>1862-5355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19F782hacDOILxhwo-uQJumQoTZj0lnMvzda0Z2re7icczh8hFwiXCOAusmINRcUsKUAXDWUH5EFNjWjkkt5_KuFOiVnOW8BahAgF-R2VeXJdIOvrEkujGYI06FyoTxH66s-pmqKuzjETbBmqOxgcg590VOI4zk56c2Q_cXPXZK3h_vXuye6fnl8vlutqeU1myhDIxm0ZaHzCK5TDQMhLQJK7G1nOlf3Apq2K2-moG4tOtc577mXTmHLl-Rq7t2l-LH3edLbuE9la9ZMSOBMcSWKi80um2LOyfd6l8K7SQeNoL8o6ZmSLpT0NyXNS4jPoVzM48anv-p_Up_ozWmV</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Maroulas, Vasileios</creator><creator>Micucci, Cassie Putman</creator><creator>Spannaus, Adam</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3412-6766</orcidid></search><sort><creationdate>20200901</creationdate><title>A stable cardinality distance for topological classification</title><author>Maroulas, Vasileios ; Micucci, Cassie Putman ; Spannaus, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-21a5209163de10db782045c10151fcbabd6f4089b20427069c1ddbdee3e5d7193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Chemistry and Earth Sciences</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Crystal structure</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Distance measurement</topic><topic>Economics</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Law</topic><topic>Management</topic><topic>Materials science</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Physics</topic><topic>Regular Article</topic><topic>Regularization</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maroulas, Vasileios</creatorcontrib><creatorcontrib>Micucci, Cassie Putman</creatorcontrib><creatorcontrib>Spannaus, Adam</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in data analysis and classification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maroulas, Vasileios</au><au>Micucci, Cassie Putman</au><au>Spannaus, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stable cardinality distance for topological classification</atitle><jtitle>Advances in data analysis and classification</jtitle><stitle>Adv Data Anal Classif</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>14</volume><issue>3</issue><spage>611</spage><epage>628</epage><pages>611-628</pages><issn>1862-5347</issn><eissn>1862-5355</eissn><abstract>This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams are multisets summarizing the connectedness and holes of given data. A new distance on the space of persistence diagrams generates relevant input features for a classification algorithm for materials science data. This distance measures the similarity of persistence diagrams using the cost of matching points and a regularization term corresponding to cardinality differences between diagrams. Establishing stability properties of this distance provides theoretical justification for the use of the distance in comparisons of such diagrams. The classification scheme succeeds in determining the crystal structure of materials on noisy and sparse data retrieved from synthetic atom probe tomography experiments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11634-019-00378-3</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3412-6766</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-5347
ispartof Advances in data analysis and classification, 2020-09, Vol.14 (3), p.611-628
issn 1862-5347
1862-5355
language eng
recordid cdi_proquest_journals_2450327374
source Springer Nature - Complete Springer Journals
subjects Algorithms
Chemistry and Earth Sciences
Classification
Computer Science
Crystal structure
Data Mining and Knowledge Discovery
Distance measurement
Economics
Finance
Health Sciences
Humanities
Insurance
Law
Management
Materials science
Mathematics and Statistics
Medicine
Physics
Regular Article
Regularization
Statistical Theory and Methods
Statistics
Statistics for Business
Statistics for Engineering
Statistics for Life Sciences
Statistics for Social Sciences
Topology
title A stable cardinality distance for topological classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A21%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stable%20cardinality%20distance%20for%20topological%20classification&rft.jtitle=Advances%20in%20data%20analysis%20and%20classification&rft.au=Maroulas,%20Vasileios&rft.date=2020-09-01&rft.volume=14&rft.issue=3&rft.spage=611&rft.epage=628&rft.pages=611-628&rft.issn=1862-5347&rft.eissn=1862-5355&rft_id=info:doi/10.1007/s11634-019-00378-3&rft_dat=%3Cproquest_cross%3E2450327374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450327374&rft_id=info:pmid/&rfr_iscdi=true