A stable cardinality distance for topological classification

This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams are multisets summarizing the connectedness and holes of given data. A new distance on the space of persistence diagrams generates relevant input fea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in data analysis and classification 2020-09, Vol.14 (3), p.611-628
Hauptverfasser: Maroulas, Vasileios, Micucci, Cassie Putman, Spannaus, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams are multisets summarizing the connectedness and holes of given data. A new distance on the space of persistence diagrams generates relevant input features for a classification algorithm for materials science data. This distance measures the similarity of persistence diagrams using the cost of matching points and a regularization term corresponding to cardinality differences between diagrams. Establishing stability properties of this distance provides theoretical justification for the use of the distance in comparisons of such diagrams. The classification scheme succeeds in determining the crystal structure of materials on noisy and sparse data retrieved from synthetic atom probe tomography experiments.
ISSN:1862-5347
1862-5355
DOI:10.1007/s11634-019-00378-3