Numerical simulation of solidification of an iron-based binary alloy modified with nanoscale particles
A mathematical model of solidification of an iron-based binary alloy (Fe-C) modified with nanosize high-refractory particles is proposed. The processes of alloy heterogeneous nucleation on the surface of nanosize particles and those of alloy crystallization in a cylindrical mold are described. For l...
Gespeichert in:
Veröffentlicht in: | Thermophysics and aeromechanics 2020-05, Vol.27 (3), p.449-456 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A mathematical model of solidification of an iron-based binary alloy (Fe-C) modified with nanosize high-refractory particles is proposed. The processes of alloy heterogeneous nucleation on the surface of nanosize particles and those of alloy crystallization in a cylindrical mold are described. For liquidus temperature, a linear approximation of the concentration of dissolved carbon is adopted; the law of change of this temperature obeys the non-equilibrium lever rule. The volume of the solid phase formed around a nucleus during the crystallization determines the characteristic size of the grain structure in the solidified alloy. Numerical simulation of melt solidification in a cylindrical crucible was carried out, and the kinetics of heterogeneous nucleation and growth of the solid phase was analyzed. It was found that the conditions for nucleation and crystallization differ substantially within the casting. It is shown that, as the melt undergoes cooling, volume-sequential crystallization gets established. |
---|---|
ISSN: | 0869-8643 1531-8699 |
DOI: | 10.1134/S0869864320030130 |