Improved PSi/c-Si and Ga/PSi/c-Si nanostructures dependent solar cell efficiency
Nanometre size semiconductors have been a topic of great interest. Porous silicon surfaces have been fabricated by photoelectrochemical etching for n-type silicon wafers. The objective of this paper focuses on the investigation of the effecting of deposited p-Ga/n-PSi on the performance of silicon s...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2020-10, Vol.126 (10), Article 802 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanometre size semiconductors have been a topic of great interest. Porous silicon surfaces have been fabricated by photoelectrochemical etching for n-type silicon wafers. The objective of this paper focuses on the investigation of the effecting of deposited p-Ga/n-PSi on the performance of silicon solar cells. Gallium thin layer (400 nm) doped n-type porous silicon has been Determined by photoluminescence spectroscopy. Ga doping process was carried out by a physical vapor deposition technique and has subsequently been annealed at 1100 °C for 3 h. The surface morphology resulting from this process was observed by scanning electron microscopy. The measured spectra illustrate that the luminescence peak of PSi-doped Ga was shifted strongly to a shorter wavelength. One luminescence band appears at the peak of about ~ 612 nm for PSi/c-Si; while the photoluminescence spectrum of Ga/PSi/c-Si is produced by two light bands with peaks about ~ 435 and ~ 830 nm. The fabricated solar cell showed good photovoltaic properties were the conversion efficiency increased from (12.25 to 14.8%) and the filling factor increased from (79.47–82.33) in comparison with other solar cells. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-020-03985-6 |