Evaluation of Simplified Surface Energy Balance Index (S-SEBI) Method for Estimating Actual Evapotranspiration in Kangsabati Reservoir Command Using Landsat 8 Imagery

Evapotranspiration (ET) is an important hydrological variable for better irrigation management, water budgeting, and runoff estimation which should be estimated as precisely as possible both in space and time. However, most of the available crop coefficient-based ET computation methods provide point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Indian Society of Remote Sensing 2020-10, Vol.48 (10), p.1421-1432
Hauptverfasser: Kumar, Utkarsh, Sahoo, Bhabagrahi, Chatterjee, Chandranath, Raghuwanshi, Narendra Singh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evapotranspiration (ET) is an important hydrological variable for better irrigation management, water budgeting, and runoff estimation which should be estimated as precisely as possible both in space and time. However, most of the available crop coefficient-based ET computation methods provide point-scale estimates which need upscaling to apply at the catchment or command area scale. This study evaluates the applicability of the simplified surface energy balance index (S-SEBI) method to compute the spatially distributed daily ET in the Kangsabati reservoir command in eastern India considering the crop coefficient-based coupled Hargreaves–Samani (ETc_HG) method as the benchmark. The study is based on two major crops of paddy and potato in the Rabi season of 2015 at 100 surveyed ground truth locations in the selected command area having different crop growth stages and using the site-specific Landsat 8 images on three cloud-free dates. The S-SEBI method shows improved ET estimates during the crop development stage characterized by higher canopy cover than that during the initial crop development stage with lesser canopy cover that traps less radiation. Results revealed that S-SEBI-based ET estimates correlated well with ETc_HG with r and RMSE value of 0.06 and 1.13 mm/day (initial stage), 0.71 and 0.52 mm/day (development stage) and 0.77 and 0.52 (maturity stage) for paddy. The r and RMSE value for potato is found to be better during the development stage (0.43, 0.69 mm/day) than the initial stage (0.17, 0.64 mm/day) in a similar trend with paddy. Therefore, the crop coefficient-based method could be advantageous at point-scale with adequate data availability conditions, whereas the S-SEBI method could be used in data-scarce areas to estimate the spatially distributed ET values.
ISSN:0255-660X
0974-3006
DOI:10.1007/s12524-020-01166-9