Equicontinuity, Shadowing and Distality in General Topological Spaces

We consider the notions of equicontinuity point, sensitivity point and so on from a topological point of view. Many of these notions can be sensibly defined either in terms of (finite) open covers or uniformities. We show that for the notions of equicontinuity point and sensitivity point, Hausdorff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak Mathematical Journal 2020-10, Vol.70 (3), p.711-726
1. Verfasser: Wang, Huoyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the notions of equicontinuity point, sensitivity point and so on from a topological point of view. Many of these notions can be sensibly defined either in terms of (finite) open covers or uniformities. We show that for the notions of equicontinuity point and sensitivity point, Hausdorff or uniform versions coincide in compact Hausdorff spaces and are equivalent to the standard definitions stated in terms of a metric in compact metric spaces. We prove that a uniformly chain transitive map with uniform shadowing property on a compact Hausdorff uniform space is either uniformly equicontinuous or it has no uniform equicontinuity points.
ISSN:0011-4642
1572-9141
DOI:10.21136/CMJ.2020.0488-18