The complexity of total edge domination and some related results on trees

For a graph G = ( V , E ) with vertex set V and edge set E , a subset F of E is called an edge dominating set (resp. a total edge dominating set ) if every edge in E \ F (resp. in E ) is adjacent to at least one edge in F , the minimum cardinality of an edge dominating set (resp. a total edge domina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2020-10, Vol.40 (3), p.571-589
Hauptverfasser: Pan, Zhuo, Yang, Yu, Li, Xianyue, Xu, Shou-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a graph G = ( V , E ) with vertex set V and edge set E , a subset F of E is called an edge dominating set (resp. a total edge dominating set ) if every edge in E \ F (resp. in E ) is adjacent to at least one edge in F , the minimum cardinality of an edge dominating set (resp. a total edge dominating set) of G is the edge domination number (resp. total edge domination number ) of G , denoted by γ ′ ( G ) (resp. γ t ′ ( G ) ). In the present paper, we first prove that the total edge domination problem is NP-complete for bipartite graphs with maximum degree 3. Then, for a graph G , we give the inequality γ ′ ( G ) ⩽ γ t ′ ( G ) ⩽ 2 γ ′ ( G ) and characterize the trees T which obtain the upper or lower bounds in the inequality.
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-020-00596-y