The complexity of total edge domination and some related results on trees
For a graph G = ( V , E ) with vertex set V and edge set E , a subset F of E is called an edge dominating set (resp. a total edge dominating set ) if every edge in E \ F (resp. in E ) is adjacent to at least one edge in F , the minimum cardinality of an edge dominating set (resp. a total edge domina...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2020-10, Vol.40 (3), p.571-589 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a graph
G
=
(
V
,
E
)
with vertex set
V
and edge set
E
, a subset
F
of
E
is called an
edge dominating set
(resp. a
total edge dominating set
) if every edge in
E
\
F
(resp. in
E
) is adjacent to at least one edge in
F
, the minimum cardinality of an edge dominating set (resp. a total edge dominating set) of
G
is the
edge domination number
(resp.
total edge domination number
) of
G
, denoted by
γ
′
(
G
)
(resp.
γ
t
′
(
G
)
). In the present paper, we first prove that the total edge domination problem is NP-complete for bipartite graphs with maximum degree 3. Then, for a graph
G
, we give the inequality
γ
′
(
G
)
⩽
γ
t
′
(
G
)
⩽
2
γ
′
(
G
)
and characterize the trees
T
which obtain the upper or lower bounds in the inequality. |
---|---|
ISSN: | 1382-6905 1573-2886 |
DOI: | 10.1007/s10878-020-00596-y |