Anthropogenic Invasion of Micromycetes to Undisturbed Ecosystems of the Larsemann Hills Oasis (East Antarctica)
The Progress Station is the largest Russian Antarctic station. The anthropogenic impact on primary soils in the area of this station is reflected in the chemical structure of soils and structure of microbial communities. The article shows a multiple increase in the number of microorganisms (especial...
Gespeichert in:
Veröffentlicht in: | Russian journal of biological invasions 2020-07, Vol.11 (3), p.208-215 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Progress Station is the largest Russian Antarctic station. The anthropogenic impact on primary soils in the area of this station is reflected in the chemical structure of soils and structure of microbial communities. The article shows a multiple increase in the number of microorganisms (especially microscopic fungi) in contaminated soils around the Progress Station. The anthropogenic impact changes the structure of complexes of soil microorganisms. The proportion of mesophilic microorganisms significantly increases under these conditions. Fifty-three micromycete species of 28 genera have been identified in samples of primary soils and anthropogenic substrates. Their diversity decreases from the anthropogenic soils and anthropogenic substrates to the control (“clean”) soils. It is shown that an increase in the number of micromycete species in the area of the polar station results from the invasion of new micromycete species due to human activities. Some native species of micromycetes can adapt to anthropogenic substrates and can be destructors of different introduced materials. Over 56 and 70% among micromycetes from the contaminated soils and anthropogenic substrates, respectively, can be considered potentially pathogenic species. Therefore, invasive processes change the structure of complexes of soil micromycetes, which can serve as an indicator of anthropogenic impact on ecosystems in the Larsemann Hills oasis in East Antarctica. |
---|---|
ISSN: | 2075-1117 2075-1125 |
DOI: | 10.1134/S2075111720030121 |