A Study of Error Estimation for Second Order Fredholm Integro-Differential Equations

In this work, we study efficient asymptotically correct a posteriori error estimates for the numerical approximation of second order Fredholm integro-differential equations. We use the defect correction principle to find the deviation of the error estimation and show that collocation method by using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2020-09, Vol.51 (3), p.1203-1223
Hauptverfasser: Parvaz, R., Zarebnia, M., Bagherzadeh, A. Saboor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we study efficient asymptotically correct a posteriori error estimates for the numerical approximation of second order Fredholm integro-differential equations. We use the defect correction principle to find the deviation of the error estimation and show that collocation method by using m degree piecewise polynomial provides order O ( h m + 2 ) for the deviation of the error. Also, the theoretical behavior is tested on examples and it is shown that the numerical results confirm theoretical analysis.
ISSN:0019-5588
0975-7465
DOI:10.1007/s13226-020-0459-8