A Study of Error Estimation for Second Order Fredholm Integro-Differential Equations
In this work, we study efficient asymptotically correct a posteriori error estimates for the numerical approximation of second order Fredholm integro-differential equations. We use the defect correction principle to find the deviation of the error estimation and show that collocation method by using...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2020-09, Vol.51 (3), p.1203-1223 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we study efficient asymptotically correct a posteriori error estimates for the numerical approximation of second order Fredholm integro-differential equations. We use the defect correction principle to find the deviation of the error estimation and show that collocation method by using
m
degree piecewise polynomial provides order
O
(
h
m
+
2
)
for the deviation of the error. Also, the theoretical behavior is tested on examples and it is shown that the numerical results confirm theoretical analysis. |
---|---|
ISSN: | 0019-5588 0975-7465 |
DOI: | 10.1007/s13226-020-0459-8 |