Bundles with non-multiplicative \(\hat{A}\)-genus and spaces of metrics with lower curvature bounds

We construct smooth bundles with base and fiber products of two spheres whose total spaces have non-vanishing \(\hat{A}\)-genus. We then use these bundles to locate non-trivial rational homotopy groups of spaces of Riemannian metrics with lower curvature bounds for all Spin-manifolds of dimension si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-11
Hauptverfasser: Frenck, Georg, Reinhold, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct smooth bundles with base and fiber products of two spheres whose total spaces have non-vanishing \(\hat{A}\)-genus. We then use these bundles to locate non-trivial rational homotopy groups of spaces of Riemannian metrics with lower curvature bounds for all Spin-manifolds of dimension six or at least ten which admit such a metric and are a connected sum of some manifold and \(S^n \times S^n\) or \(S^n \times S^{n+1}\), respectively. We also construct manifolds \(M\) whose spaces of Riemannian metrics of positive scalar curvature have homotopy groups that contain elements of infinite order which lie in the image of the orbit map induced by the push-forward action of the diffeomorphism group of \(M\).
ISSN:2331-8422
DOI:10.48550/arxiv.2010.04588