Model-Driven Deep Learning for Massive MU-MIMO With Finite-Alphabet Precoding

Massive multiuser multiple-input multiple-output (MU-MIMO) has been the mainstream technology in fifth-generation wireless systems. To reduce high hardware costs and power consumption in massive MU-MIMO, low-resolution digital-to-analog converters (DAC) for each antenna and radio frequency (RF) chai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2020-10, Vol.24 (10), p.2216-2220
Hauptverfasser: He, Hengtao, Zhang, Mengjiao, Jin, Shi, Wen, Chao-Kai, Li, Geoffrey Ye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Massive multiuser multiple-input multiple-output (MU-MIMO) has been the mainstream technology in fifth-generation wireless systems. To reduce high hardware costs and power consumption in massive MU-MIMO, low-resolution digital-to-analog converters (DAC) for each antenna and radio frequency (RF) chain in downlink transmission is used, which brings challenges for precoding design. To circumvent these obstacles, we develop a model-driven deep learning (DL) network for massive MU-MIMO with finite-alphabet precoding in this article. The architecture of the network is specially designed by unfolding an iterative algorithm. Compared with the traditional state-of-the-art techniques, the proposed DL-based precoder shows significant advantages in performance, complexity, and robustness to channel estimation error under Rayleigh fading channel.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2020.3002082