A Machine Learning Gateway for Scientific Workflow Design
The paper introduces DeepForge, a gateway to deep learning for scientific computing. DeepForge provides an easy to use, yet powerful visual/textual interface to facilitate the rapid development of deep learning models by novices as well as experts. Utilizing a cloud-based infrastructure, built-in ve...
Gespeichert in:
Veröffentlicht in: | Scientific programming 2020, Vol.2020 (2020), p.1-15 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper introduces DeepForge, a gateway to deep learning for scientific computing. DeepForge provides an easy to use, yet powerful visual/textual interface to facilitate the rapid development of deep learning models by novices as well as experts. Utilizing a cloud-based infrastructure, built-in version control, and multiuser collaboration support, DeepForge promotes reproducibility and ease of access and enables remote execution of machine learning pipelines. The tool currently supports TensorFlow/Keras, but its extensible architecture enables easy integration of additional platforms. |
---|---|
ISSN: | 1058-9244 1875-919X |
DOI: | 10.1155/2020/8867380 |