Synthesis of (-)-epigallocatechin-3-gallate derivative containing a triazole ring and combined with cisplatin/paclitaxel inhibits NSCLC cancer cells by decreasing phosphorylation of the EGFR

Non-small-cell lung cancer is one of the principal causes of cancer-related death around the world. Chemotherapy is commonly used to treat wild type of epidermal growth factor receptor non-small-cell lung cancer. (-)-Epigallocatechin-3-gallate is the most abundant and active catechin. However, (-)-e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical research 2020-09, Vol.44 (9-10), p.586-591
Hauptverfasser: Zi, Cheng-Ting, Sun, Pei-Yuan, Zhang, Ning, Tang, Han, Yang, Hao-Nang, Wang, Qi, Wang, Yu-Na, Wang, Jing, Wang, Xuan-Jun, Sheng, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-small-cell lung cancer is one of the principal causes of cancer-related death around the world. Chemotherapy is commonly used to treat wild type of epidermal growth factor receptor non-small-cell lung cancer. (-)-Epigallocatechin-3-gallate is the most abundant and active catechin. However, (-)-epigallocatechin-3-gallate has limited clinical application due to its poor stability and absorption. Herein, we report that a glycosylated azide undergoes a click reaction with the terminal alkyne of (-)-epigallocatechin-3-gallate to yield a triazole-linked glucose-(-)-epigallocatechin-3-gallate derivative and have evaluated its in vitro anticancer activity against human non-small-cell lung cancer cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The product inhibits human non-small-cell lung cancer cell lines with wild type of epidermal growth factor receptor and in combination with cisplatin/paclitaxel results in more pronounced proliferation inhibition than when used alone. Stability investigations indicates that the conjugated glucose residue can improve the stability of the (-)-epigallocatechin-3-gallate scaffold. Our studies suggest that the combination of the glucose-(-)-epigallocatechin-3-gallate derivative and chemotherapeutic drugs may provide a novel strategy for the treatment of non-small-cell lung cancer.
ISSN:1747-5198
2047-6507
DOI:10.1177/1747519820910390