Self-consistent ladder D\(\Gamma\)A approach

We present and implement a self-consistent D\(\Gamma\)A approach for multi-orbital models and ab initio materials calculations. It is applied to the one-band Hubbard model at various interaction strengths with and without doping, to the two-band Hubbard model with two largely different bandwidths, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-12
Hauptverfasser: Kaufmann, Josef, Eckhardt, Christian, Pickem, Matthias, Kitatani, Motoharu, Kauch, Anna, Held, Karsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present and implement a self-consistent D\(\Gamma\)A approach for multi-orbital models and ab initio materials calculations. It is applied to the one-band Hubbard model at various interaction strengths with and without doping, to the two-band Hubbard model with two largely different bandwidths, and to SrVO\(_3\). The self-energy feedback reduces critical temperatures compared to dynamical mean-field theory, even to zero temperature in two-dimensions. Compared to a one-shot, non-self-consistent calculation the non-local correlations are significantly reduced when they are strong. In case non-local correlations are weak to moderate as for SrVO\(_3\), one-shot calculations are sufficient.
ISSN:2331-8422
DOI:10.48550/arxiv.2010.03938