Development of electrochemical high-speed atomic force microscopy for visualizing dynamic processes of battery electrode materials

Development of lithium ion batteries with ultrafast charging rate as well as high energy/power densities and long cycle-life is one of the imperative works in the field of batteries. To achieve this goal, it requires not only to develop new electrode materials but also to develop nano-characterizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2020-10, Vol.91 (10), p.103701-103701
Hauptverfasser: Liu, Zhengliang, Bi, Zhuanfang, Shang, Yang, Liang, Yaowen, Yang, Peifa, Li, Xiao, Zhang, Chuandi, Shang, Guangyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Development of lithium ion batteries with ultrafast charging rate as well as high energy/power densities and long cycle-life is one of the imperative works in the field of batteries. To achieve this goal, it requires not only to develop new electrode materials but also to develop nano-characterization techniques that are capable of investigating the dynamic evolution of the surface/interface morphology and property of fast charging electrode materials during battery operation. Although electrochemical atomic force microscopy (EC-AFM) holds high spatial resolution, its imaging speed is too slow to visualize dynamics occurring on the timescale of minutes. In this article, we present an electrochemical high-speed AFM (EC-HS-AFM), developed by addressing key technologies involving optical detection of small cantilever deflection, dual scanner capable of high-speed and wide-range imaging, and electrochemical cell with three electrodes. EC-HS-AFM imaging from 1 fpm to ∼1 fps with a maximum scan range of 40 × 40 µm2 has been stably and reliably realized. Dynamic morphological changes in the LiMn2O4 nanoparticles during cyclic voltammetry measurements in the 0.5 mol/l Li2SO4 solution were successfully visualized. This technique will provide the possibility of tracking dynamic processes of fast charging battery materials and other surface/interface processes such as the formation of the solid electrolyte interphase layer.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0024425