GIS-based geomorphometric analysis for potential applications in reversing land and biosystem degradation

Watershed morphometric assessment is about measurements and calculations of land surface forms for the purpose of understanding hydro-geomorphological character and patterns. Important natural environment geo-information and summary of the spatial characteristics of Tana River Basin (TRB) in Kenya h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2020-10, Vol.192 (10), Article 668
Hauptverfasser: Langat, Philip Kibet, Kumar, Lalit, Koech, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Watershed morphometric assessment is about measurements and calculations of land surface forms for the purpose of understanding hydro-geomorphological character and patterns. Important natural environment geo-information and summary of the spatial characteristics of Tana River Basin (TRB) in Kenya have been obtained through hydro-geomorphometric analysis. Advanced Spaceborne Thermal Emission and Reflection Radiometer Digital Elevation Model (ASTERDEM) data and ArcGIS (ESRI Inc., version 10.4.1) together with published mathematical equations were applied to extract morphometric parameters of the drainage basin, which covers a total area of 94,930 km 2 and a span of 527.75 km. The quantitative morphometric analysis considered a total of 28 relief, areal, and linear hydro-morphometric characteristics of the TRB. Relief parameters of the basin suggest moderate-to-low overall watershed steepness, upland with rolling land surface patterns, rugged landforms susceptible to erosion and sediment transportation, and a landscape in evolution process tending towards maturity. This means stability of the land surface can be attained with intensive land degradation reversing strategies like erosion control measures. Areal characteristics further support the basin’s susceptibility to erosion as shown by stream length, stream drainage density, and circulatory ratio values. Also, the areal aspects portray peak runoffs with short duration flashes. Linear parameter value results such as bifurcation ratio imply that infiltration capacity varies with stream orders across the watershed. This hydro-geomorphometric analysis would be useful to land and water managers, researchers and practitioners of TRB, and other similar systems in designing and planning soil and water conservation and management practices such as soil erosion control, groundwater recharge activities, catchment modelling, runoff and flood studies, prospecting groundwater mapping, and biological applications.
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-020-08640-4