Stieltjes’ theorem for classical discrete orthogonal polynomials

The purpose of this note is to establish, from the hypergeometric-type difference equation introduced by Nikiforov and Uvarov, new tractable sufficient conditions for the monotonicity with respect to a real parameter of zeros of classical discrete orthogonal polynomials. This result allows one to ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2020-10, Vol.61 (10)
Hauptverfasser: Castillo, K., Rafaeli, F. R., Suzuki, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this note is to establish, from the hypergeometric-type difference equation introduced by Nikiforov and Uvarov, new tractable sufficient conditions for the monotonicity with respect to a real parameter of zeros of classical discrete orthogonal polynomials. This result allows one to carry out a systematic study of the monotonicity of zeros of classical orthogonal polynomials on linear, quadratic, q-linear, and q-quadratic grids. In particular, we analyze in a simple and unified way the monotonicity of the zeros of Hahn, Charlier, Krawtchouk, Meixner, Racah, dual Hahn, q-Meixner, quantum q-Krawtchouk, q-Krawtchouk, affine q-Krawtchouk, q-Charlier, Al-Salam–Carlitz, q-Hahn, little q-Jacobi, little q-Laguerre/Wall, q-Bessel, q-Racah, and dual q-Hahn polynomials.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0022742