Stieltjes’ theorem for classical discrete orthogonal polynomials
The purpose of this note is to establish, from the hypergeometric-type difference equation introduced by Nikiforov and Uvarov, new tractable sufficient conditions for the monotonicity with respect to a real parameter of zeros of classical discrete orthogonal polynomials. This result allows one to ca...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2020-10, Vol.61 (10) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this note is to establish, from the hypergeometric-type difference equation introduced by Nikiforov and Uvarov, new tractable sufficient conditions for the monotonicity with respect to a real parameter of zeros of classical discrete orthogonal polynomials. This result allows one to carry out a systematic study of the monotonicity of zeros of classical orthogonal polynomials on linear, quadratic, q-linear, and q-quadratic grids. In particular, we analyze in a simple and unified way the monotonicity of the zeros of Hahn, Charlier, Krawtchouk, Meixner, Racah, dual Hahn, q-Meixner, quantum q-Krawtchouk, q-Krawtchouk, affine q-Krawtchouk, q-Charlier, Al-Salam–Carlitz, q-Hahn, little q-Jacobi, little q-Laguerre/Wall, q-Bessel, q-Racah, and dual q-Hahn polynomials. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/5.0022742 |