Gaussian Process Regression for Maximum Entropy Distribution

•Devising Bayesian inference for fast evaluation of maximum entropy distribution.•Adopting Radial basis function for covariance kernel.•Excellent recovery of bi-modal densities among others. Maximum-Entropy Distributions offer an attractive family of probability densities suitable for moment closure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2020-10, Vol.418, p.109644, Article 109644
Hauptverfasser: Sadr, Mohsen, Torrilhon, Manuel, Gorji, M. Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Devising Bayesian inference for fast evaluation of maximum entropy distribution.•Adopting Radial basis function for covariance kernel.•Excellent recovery of bi-modal densities among others. Maximum-Entropy Distributions offer an attractive family of probability densities suitable for moment closure problems. Yet finding the Lagrange multipliers which parametrize these distributions, turns out to be a computational bottleneck for practical closure settings. Motivated by recent success of Gaussian processes, we investigate the suitability of Gaussian priors to approximate the Lagrange multipliers as a map of a given set of moments. Examining various kernel functions, the hyperparameters are optimized by maximizing the log-likelihood. The performance of the devised data-driven Maximum-Entropy closure is studied for couple of test cases including relaxation of non-equilibrium distributions governed by Bhatnagar-Gross-Krook and Boltzmann kinetic equations.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2020.109644