Lattice‐Strain Engineering of Homogeneous NiS0.5Se0.5 Core–Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting

Developing highly‐efficient non‐noble‐metal electrocatalysts for water splitting is crucial for the development of clean and reversible hydrogen energy. Introducing lattice strain is an effective strategy to develop efficient electrocatalysts. However, lattice strain is typically co‐created with het...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-10, Vol.32 (40), p.n/a
Hauptverfasser: Wang, Yang, Li, Xiaopeng, Zhang, Mengmeng, Zhou, Yuanguang, Rao, Dewei, Zhong, Cheng, Zhang, Jinfeng, Han, Xiaopeng, Hu, Wenbin, Zhang, Yucang, Zaghib, Karim, Wang, Yuesheng, Deng, Yida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page
container_title Advanced materials (Weinheim)
container_volume 32
creator Wang, Yang
Li, Xiaopeng
Zhang, Mengmeng
Zhou, Yuanguang
Rao, Dewei
Zhong, Cheng
Zhang, Jinfeng
Han, Xiaopeng
Hu, Wenbin
Zhang, Yucang
Zaghib, Karim
Wang, Yuesheng
Deng, Yida
description Developing highly‐efficient non‐noble‐metal electrocatalysts for water splitting is crucial for the development of clean and reversible hydrogen energy. Introducing lattice strain is an effective strategy to develop efficient electrocatalysts. However, lattice strain is typically co‐created with heterostructure, vacancy, or substrate effects, which complicate the identification of the strain‐activity correlation. Herein, a series of lattice‐strained homogeneous NiSxSe1−x nanosheets@nanorods hybrids are designed and synthesized by a facile strategy. The NiS0.5Se0.5 with ≈2.7% lattice strain exhibits outstanding activity for hydrogen and oxygen evolution reaction (HER/OER), affording low overpotentials of 70 and 257 mV at 10 mA cm−2, respectively, as well as excellent long‐term durability even at a large current density of 100 mA cm−2 (300 h), significantly superior to other benchmarks and the precious metal catalysts. Experimental and theoretical calculation results reveal that the generated lattice strain decreases the metal d‐orbital overlap, leading to a narrower bandwidth and a closer d‐band center toward the Fermi level. Thus, NiS0.5Se0.5 possesses favorable H* adsorption kinetics for HER and lower energy barriers for OER. This work provides a new insight to regulate the lattice strain of advanced catalyst materials and further improve the performance of energy conversion technologies. A series of tunable lattice‐strained NiSxSe1–x core‐shell electrocatalysts are synthesized by a facile strategy. The generated lattice strain in NiS0.5Se0.5 can decrease the metal d‐orbital overlap and lead to a closer d‐band center toward the Fermi level, thus optimizing the electronic structure and reaction energy barrier for hydrogen and oxygen evolution process, enhancing the overall water splitting performance.
doi_str_mv 10.1002/adma.202000231
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2448812157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448812157</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1481-21c5d156883aa9ad4b731435c8b25c5fb55928ce7ed428e9fb33ef693c67af923</originalsourceid><addsrcrecordid>eNo9kc1q3DAUhUVpoNOk264FXXuqH8tjLYfptBOYJlA3ZGmu5StHwSNNZTlldn2EQB-g79YnqUJKNvdy4LvnHjiEvOdsyRkTH6E_wFIwwbKQ_BVZcCV4UTKtXpMF01IVuirrN-TtNN1nRlesWpA_e0jJGfz767FJEZynWz84jxidH2iwdBcOYUCPYZ7olWvYUjWYB92EmI9-N3c4jvQKfJhSnE2aI1KYKNCdG-7GE91a64xDnyj4nn4L3Twluh3RpBgMJBhPWdsQ6fUDRshWt5Aw0uY4upzLDxfkzMI44bv_-5zcfN5-3-yK_fWXy816Xxx5WfNCcKN6rqq6lgAa-rJbSV5KZepOKKNsp5QWtcEV9qWoUdtOSrSVlqZagdVCnpMPz77HGH7MOKX2PszR55etKMu65oKrVab0M_XTjXhqj9EdIJ5aztqnBtqnBtqXBtr1p6_rFyX_AaaTgAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448812157</pqid></control><display><type>article</type><title>Lattice‐Strain Engineering of Homogeneous NiS0.5Se0.5 Core–Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Yang ; Li, Xiaopeng ; Zhang, Mengmeng ; Zhou, Yuanguang ; Rao, Dewei ; Zhong, Cheng ; Zhang, Jinfeng ; Han, Xiaopeng ; Hu, Wenbin ; Zhang, Yucang ; Zaghib, Karim ; Wang, Yuesheng ; Deng, Yida</creator><creatorcontrib>Wang, Yang ; Li, Xiaopeng ; Zhang, Mengmeng ; Zhou, Yuanguang ; Rao, Dewei ; Zhong, Cheng ; Zhang, Jinfeng ; Han, Xiaopeng ; Hu, Wenbin ; Zhang, Yucang ; Zaghib, Karim ; Wang, Yuesheng ; Deng, Yida</creatorcontrib><description>Developing highly‐efficient non‐noble‐metal electrocatalysts for water splitting is crucial for the development of clean and reversible hydrogen energy. Introducing lattice strain is an effective strategy to develop efficient electrocatalysts. However, lattice strain is typically co‐created with heterostructure, vacancy, or substrate effects, which complicate the identification of the strain‐activity correlation. Herein, a series of lattice‐strained homogeneous NiSxSe1−x nanosheets@nanorods hybrids are designed and synthesized by a facile strategy. The NiS0.5Se0.5 with ≈2.7% lattice strain exhibits outstanding activity for hydrogen and oxygen evolution reaction (HER/OER), affording low overpotentials of 70 and 257 mV at 10 mA cm−2, respectively, as well as excellent long‐term durability even at a large current density of 100 mA cm−2 (300 h), significantly superior to other benchmarks and the precious metal catalysts. Experimental and theoretical calculation results reveal that the generated lattice strain decreases the metal d‐orbital overlap, leading to a narrower bandwidth and a closer d‐band center toward the Fermi level. Thus, NiS0.5Se0.5 possesses favorable H* adsorption kinetics for HER and lower energy barriers for OER. This work provides a new insight to regulate the lattice strain of advanced catalyst materials and further improve the performance of energy conversion technologies. A series of tunable lattice‐strained NiSxSe1–x core‐shell electrocatalysts are synthesized by a facile strategy. The generated lattice strain in NiS0.5Se0.5 can decrease the metal d‐orbital overlap and lead to a closer d‐band center toward the Fermi level, thus optimizing the electronic structure and reaction energy barrier for hydrogen and oxygen evolution process, enhancing the overall water splitting performance.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202000231</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Clean energy ; Core-shell structure ; core–shell ; Electrocatalysts ; Energy conversion ; Heterostructures ; Hydrogen-based energy ; Lattice strain ; Lattice vacancies ; Materials science ; metal chalcogenide ; nanohybrid ; Nanorods ; Oxygen evolution reactions ; Substrates ; Water splitting</subject><ispartof>Advanced materials (Weinheim), 2020-10, Vol.32 (40), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8890-552X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202000231$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202000231$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Zhang, Mengmeng</creatorcontrib><creatorcontrib>Zhou, Yuanguang</creatorcontrib><creatorcontrib>Rao, Dewei</creatorcontrib><creatorcontrib>Zhong, Cheng</creatorcontrib><creatorcontrib>Zhang, Jinfeng</creatorcontrib><creatorcontrib>Han, Xiaopeng</creatorcontrib><creatorcontrib>Hu, Wenbin</creatorcontrib><creatorcontrib>Zhang, Yucang</creatorcontrib><creatorcontrib>Zaghib, Karim</creatorcontrib><creatorcontrib>Wang, Yuesheng</creatorcontrib><creatorcontrib>Deng, Yida</creatorcontrib><title>Lattice‐Strain Engineering of Homogeneous NiS0.5Se0.5 Core–Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting</title><title>Advanced materials (Weinheim)</title><description>Developing highly‐efficient non‐noble‐metal electrocatalysts for water splitting is crucial for the development of clean and reversible hydrogen energy. Introducing lattice strain is an effective strategy to develop efficient electrocatalysts. However, lattice strain is typically co‐created with heterostructure, vacancy, or substrate effects, which complicate the identification of the strain‐activity correlation. Herein, a series of lattice‐strained homogeneous NiSxSe1−x nanosheets@nanorods hybrids are designed and synthesized by a facile strategy. The NiS0.5Se0.5 with ≈2.7% lattice strain exhibits outstanding activity for hydrogen and oxygen evolution reaction (HER/OER), affording low overpotentials of 70 and 257 mV at 10 mA cm−2, respectively, as well as excellent long‐term durability even at a large current density of 100 mA cm−2 (300 h), significantly superior to other benchmarks and the precious metal catalysts. Experimental and theoretical calculation results reveal that the generated lattice strain decreases the metal d‐orbital overlap, leading to a narrower bandwidth and a closer d‐band center toward the Fermi level. Thus, NiS0.5Se0.5 possesses favorable H* adsorption kinetics for HER and lower energy barriers for OER. This work provides a new insight to regulate the lattice strain of advanced catalyst materials and further improve the performance of energy conversion technologies. A series of tunable lattice‐strained NiSxSe1–x core‐shell electrocatalysts are synthesized by a facile strategy. The generated lattice strain in NiS0.5Se0.5 can decrease the metal d‐orbital overlap and lead to a closer d‐band center toward the Fermi level, thus optimizing the electronic structure and reaction energy barrier for hydrogen and oxygen evolution process, enhancing the overall water splitting performance.</description><subject>Catalysts</subject><subject>Clean energy</subject><subject>Core-shell structure</subject><subject>core–shell</subject><subject>Electrocatalysts</subject><subject>Energy conversion</subject><subject>Heterostructures</subject><subject>Hydrogen-based energy</subject><subject>Lattice strain</subject><subject>Lattice vacancies</subject><subject>Materials science</subject><subject>metal chalcogenide</subject><subject>nanohybrid</subject><subject>Nanorods</subject><subject>Oxygen evolution reactions</subject><subject>Substrates</subject><subject>Water splitting</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kc1q3DAUhUVpoNOk264FXXuqH8tjLYfptBOYJlA3ZGmu5StHwSNNZTlldn2EQB-g79YnqUJKNvdy4LvnHjiEvOdsyRkTH6E_wFIwwbKQ_BVZcCV4UTKtXpMF01IVuirrN-TtNN1nRlesWpA_e0jJGfz767FJEZynWz84jxidH2iwdBcOYUCPYZ7olWvYUjWYB92EmI9-N3c4jvQKfJhSnE2aI1KYKNCdG-7GE91a64xDnyj4nn4L3Twluh3RpBgMJBhPWdsQ6fUDRshWt5Aw0uY4upzLDxfkzMI44bv_-5zcfN5-3-yK_fWXy816Xxx5WfNCcKN6rqq6lgAa-rJbSV5KZepOKKNsp5QWtcEV9qWoUdtOSrSVlqZagdVCnpMPz77HGH7MOKX2PszR55etKMu65oKrVab0M_XTjXhqj9EdIJ5aztqnBtqnBtqXBtr1p6_rFyX_AaaTgAk</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wang, Yang</creator><creator>Li, Xiaopeng</creator><creator>Zhang, Mengmeng</creator><creator>Zhou, Yuanguang</creator><creator>Rao, Dewei</creator><creator>Zhong, Cheng</creator><creator>Zhang, Jinfeng</creator><creator>Han, Xiaopeng</creator><creator>Hu, Wenbin</creator><creator>Zhang, Yucang</creator><creator>Zaghib, Karim</creator><creator>Wang, Yuesheng</creator><creator>Deng, Yida</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8890-552X</orcidid></search><sort><creationdate>20201001</creationdate><title>Lattice‐Strain Engineering of Homogeneous NiS0.5Se0.5 Core–Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting</title><author>Wang, Yang ; Li, Xiaopeng ; Zhang, Mengmeng ; Zhou, Yuanguang ; Rao, Dewei ; Zhong, Cheng ; Zhang, Jinfeng ; Han, Xiaopeng ; Hu, Wenbin ; Zhang, Yucang ; Zaghib, Karim ; Wang, Yuesheng ; Deng, Yida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1481-21c5d156883aa9ad4b731435c8b25c5fb55928ce7ed428e9fb33ef693c67af923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysts</topic><topic>Clean energy</topic><topic>Core-shell structure</topic><topic>core–shell</topic><topic>Electrocatalysts</topic><topic>Energy conversion</topic><topic>Heterostructures</topic><topic>Hydrogen-based energy</topic><topic>Lattice strain</topic><topic>Lattice vacancies</topic><topic>Materials science</topic><topic>metal chalcogenide</topic><topic>nanohybrid</topic><topic>Nanorods</topic><topic>Oxygen evolution reactions</topic><topic>Substrates</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Zhang, Mengmeng</creatorcontrib><creatorcontrib>Zhou, Yuanguang</creatorcontrib><creatorcontrib>Rao, Dewei</creatorcontrib><creatorcontrib>Zhong, Cheng</creatorcontrib><creatorcontrib>Zhang, Jinfeng</creatorcontrib><creatorcontrib>Han, Xiaopeng</creatorcontrib><creatorcontrib>Hu, Wenbin</creatorcontrib><creatorcontrib>Zhang, Yucang</creatorcontrib><creatorcontrib>Zaghib, Karim</creatorcontrib><creatorcontrib>Wang, Yuesheng</creatorcontrib><creatorcontrib>Deng, Yida</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yang</au><au>Li, Xiaopeng</au><au>Zhang, Mengmeng</au><au>Zhou, Yuanguang</au><au>Rao, Dewei</au><au>Zhong, Cheng</au><au>Zhang, Jinfeng</au><au>Han, Xiaopeng</au><au>Hu, Wenbin</au><au>Zhang, Yucang</au><au>Zaghib, Karim</au><au>Wang, Yuesheng</au><au>Deng, Yida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice‐Strain Engineering of Homogeneous NiS0.5Se0.5 Core–Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>32</volume><issue>40</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Developing highly‐efficient non‐noble‐metal electrocatalysts for water splitting is crucial for the development of clean and reversible hydrogen energy. Introducing lattice strain is an effective strategy to develop efficient electrocatalysts. However, lattice strain is typically co‐created with heterostructure, vacancy, or substrate effects, which complicate the identification of the strain‐activity correlation. Herein, a series of lattice‐strained homogeneous NiSxSe1−x nanosheets@nanorods hybrids are designed and synthesized by a facile strategy. The NiS0.5Se0.5 with ≈2.7% lattice strain exhibits outstanding activity for hydrogen and oxygen evolution reaction (HER/OER), affording low overpotentials of 70 and 257 mV at 10 mA cm−2, respectively, as well as excellent long‐term durability even at a large current density of 100 mA cm−2 (300 h), significantly superior to other benchmarks and the precious metal catalysts. Experimental and theoretical calculation results reveal that the generated lattice strain decreases the metal d‐orbital overlap, leading to a narrower bandwidth and a closer d‐band center toward the Fermi level. Thus, NiS0.5Se0.5 possesses favorable H* adsorption kinetics for HER and lower energy barriers for OER. This work provides a new insight to regulate the lattice strain of advanced catalyst materials and further improve the performance of energy conversion technologies. A series of tunable lattice‐strained NiSxSe1–x core‐shell electrocatalysts are synthesized by a facile strategy. The generated lattice strain in NiS0.5Se0.5 can decrease the metal d‐orbital overlap and lead to a closer d‐band center toward the Fermi level, thus optimizing the electronic structure and reaction energy barrier for hydrogen and oxygen evolution process, enhancing the overall water splitting performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202000231</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8890-552X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-10, Vol.32 (40), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2448812157
source Wiley Online Library Journals Frontfile Complete
subjects Catalysts
Clean energy
Core-shell structure
core–shell
Electrocatalysts
Energy conversion
Heterostructures
Hydrogen-based energy
Lattice strain
Lattice vacancies
Materials science
metal chalcogenide
nanohybrid
Nanorods
Oxygen evolution reactions
Substrates
Water splitting
title Lattice‐Strain Engineering of Homogeneous NiS0.5Se0.5 Core–Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%E2%80%90Strain%20Engineering%20of%20Homogeneous%20NiS0.5Se0.5%20Core%E2%80%93Shell%20Nanostructure%20as%20a%20Highly%20Efficient%20and%20Robust%20Electrocatalyst%20for%20Overall%20Water%20Splitting&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Yang&rft.date=2020-10-01&rft.volume=32&rft.issue=40&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202000231&rft_dat=%3Cproquest_wiley%3E2448812157%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448812157&rft_id=info:pmid/&rfr_iscdi=true