On commuting probabilities in finite groups and rings

We show that the set of all commuting probabilities in finite rings is a subset of the set of all commuting probabilities in finite nilpotent groups of class \(\le2\). We believe that these two sets are equal; we prove they are equal, when restricted to groups and rings with odd number of elements.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-10
Hauptverfasser: Juráš, Martin, Ursul, Mihail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the set of all commuting probabilities in finite rings is a subset of the set of all commuting probabilities in finite nilpotent groups of class \(\le2\). We believe that these two sets are equal; we prove they are equal, when restricted to groups and rings with odd number of elements.
ISSN:2331-8422