Capacitive detection of magnetostriction, dielectric constant, and magneto-caloric effects in pulsed magnetic fields

We report on the development of a capacitance measuring system that allows measurements of capacitance in pulsed magnetic fields up to 61 T. By using this system, magnetic-field responses of various physical quantities, such as magnetostriction, magnetic-field-induced change in complex dielectric co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2020-10, Vol.91 (10), p.105103-105103
Hauptverfasser: Miyake, Atsushi, Mitamura, Hiroyuki, Kawachi, Shiro, Kimura, Kenta, Kimura, Tsuyoshi, Kihara, Takumi, Tachibana, Makoto, Tokunaga, Masashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report on the development of a capacitance measuring system that allows measurements of capacitance in pulsed magnetic fields up to 61 T. By using this system, magnetic-field responses of various physical quantities, such as magnetostriction, magnetic-field-induced change in complex dielectric constant, and magneto-caloric effect, can be investigated in pulsed-magnetic-field conditions. Here, we examine the validity of our system for investigations of these magnetic-field-induced phenomena in pulse magnets. For the magnetostriction measurement, magnetostriction of a specimen can be measured through a change in the capacitance between two aligned electrodes glued on the specimen and a dilatometer. We demonstrate a precise detection of valley polarization in semimetallic bismuth through a magnetostriction signal with a resolution better than 10−6 of the relative length change. For the magnetic-field-induced change in complex dielectric constant, we successfully observed clear dielectric anomalies accompanied by magnetic/magnetoelectric phase transitions in multiferroic Pb(TiO)Cu4(PO4)4. For the measurement of magneto-caloric effect, a magnetic-field-induced change in sample temperature was verified for Gd3Ga5O12 with a capacitance thermometer made of a non-magnetic ferroelectric compound KTa1−xNbxO3 (x = 0.02) whose capacitance is nearly field-independent. These results show that our capacitance measuring system is a promising tool to study various magnetic-field-induced phenomena, which have been difficult to detect in pulsed magnetic fields.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0010753