Thermoelectric Si1−xGex and Ge epitaxial films on Si(001) with controlled composition and strain for group IV element-based thermoelectric generators
This study presents the material design of Si1−xGex epitaxial films/Si for thin film thermoelectric generators (TFTEGs) by investigating their thermoelectric properties. The thermoelectric films composed of group-IV elements are advantageous due to their compatibility with the Si process. We fabrica...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2020-10, Vol.117 (14) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study presents the material design of Si1−xGex epitaxial films/Si for thin film thermoelectric generators (TFTEGs) by investigating their thermoelectric properties. The thermoelectric films composed of group-IV elements are advantageous due to their compatibility with the Si process. We fabricated Si1−xGex epitaxial films with various controlled x values and strains using various growth methods. Ge epitaxial films without strains exhibited the highest thermoelectric power factor (∼47 μW cm−1 K−2) among various strain-controlled Si1−xGex (x ≠ 1) epitaxial films, which is higher at room temperature than SiGe alloy-based bulks ever reported. On the other hand, strained Si1−xGex epitaxial films showed an ultralow thermal conductivity of ∼2 W m−1 K−1, which is close to the value for amorphous Si. In addition to strained SiGe films with the ultralow thermal conductivity, unstrained Ge films with a high thermoelectric power factor can also be used for future TFTEGs by applying a nanostructuring technique. A preliminary TFTEG of Ge epitaxial films was realized, which generated a maximum power of ∼0.10 μW cm−2 under a temperature difference of 20 K. This demonstrates that epitaxial films composed of group-IV semiconductors are promising materials for TFTEG applications. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0023820 |