Thermoelectric Si1−xGex and Ge epitaxial films on Si(001) with controlled composition and strain for group IV element-based thermoelectric generators

This study presents the material design of Si1−xGex epitaxial films/Si for thin film thermoelectric generators (TFTEGs) by investigating their thermoelectric properties. The thermoelectric films composed of group-IV elements are advantageous due to their compatibility with the Si process. We fabrica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-10, Vol.117 (14)
Hauptverfasser: Taniguchi, Tatsuhiko, Ishibe, Takafumi, Hosoda, Ryoya, Wagatsuma, Youya, Alam, Md. Mahfuz, Sawano, Kentarou, Uenuma, Mutsunori, Uraoka, Yukiharu, Yamashita, Yuichiro, Mori, Nobuya, Nakamura, Yoshiaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents the material design of Si1−xGex epitaxial films/Si for thin film thermoelectric generators (TFTEGs) by investigating their thermoelectric properties. The thermoelectric films composed of group-IV elements are advantageous due to their compatibility with the Si process. We fabricated Si1−xGex epitaxial films with various controlled x values and strains using various growth methods. Ge epitaxial films without strains exhibited the highest thermoelectric power factor (∼47 μW cm−1 K−2) among various strain-controlled Si1−xGex (x ≠ 1) epitaxial films, which is higher at room temperature than SiGe alloy-based bulks ever reported. On the other hand, strained Si1−xGex epitaxial films showed an ultralow thermal conductivity of ∼2 W m−1 K−1, which is close to the value for amorphous Si. In addition to strained SiGe films with the ultralow thermal conductivity, unstrained Ge films with a high thermoelectric power factor can also be used for future TFTEGs by applying a nanostructuring technique. A preliminary TFTEG of Ge epitaxial films was realized, which generated a maximum power of ∼0.10 μW cm−2 under a temperature difference of 20 K. This demonstrates that epitaxial films composed of group-IV semiconductors are promising materials for TFTEG applications.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0023820