Locomo-Net: A Low -Complex Deep Learning Framework for sEMG-Based Hand Movement Recognition for Prosthetic Control

Background: The enhancement in the performance of the myoelectric pattern recognition techniques based on deep learning algorithm possess computationally expensive and exhibit extensive memory behavior. Therefore, in this paper we report a deep learning framework named 'Low-Complex Movement rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of translational engineering in health and medicine 2020-01, Vol.8, p.1-12
Hauptverfasser: Gautam, Arvind, Panwar, Madhuri, Wankhede, Archana, Arjunan, Sridhar P., Naik, Ganesh R., Acharyya, Amit, Kumar, Dinesh K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: The enhancement in the performance of the myoelectric pattern recognition techniques based on deep learning algorithm possess computationally expensive and exhibit extensive memory behavior. Therefore, in this paper we report a deep learning framework named 'Low-Complex Movement recognition-Net' (LoCoMo-Net) built with convolution neural network (CNN) for recognition of wrist and finger flexion movements; grasping and functional movements; and force pattern from single channel surface electromyography (sEMG) recording. The network consists of a two-stage pipeline: 1) input data compression; 2) data-driven weight sharing. Methods: The proposed framework was validated on two different datasets- our own dataset (DS1) and publicly available NinaPro dataset (DS2) for 16 movements and 50 movements respectively. Further, we have prototyped the proposed LoCoMo-Net on Virtex-7 Xilinx field-programmable gate array (FPGA) platform and validated for 15 movements from DS1 to demonstrate its feasibility for real-time execution. Results: The effectiveness of the proposed LoCoMo-Net was verified by a comparative analysis against the benchmarked models using the same datasets wherein our proposed model outperformed Twin- Support Vector Machine (SVM) and existing CNN based model by an average classification accuracy of 8.5 % and 16.0 % respectively. In addition, hardware complexity analysis is done to reveal the advantages of the two-stage pipeline where approximately 27 %, 49 %, 50 %, 23 %, and 43 % savings achieved in lookup tables (LUT's), registers, memory, power consumption and computational time respectively. Conclusion: The clinical significance of such sEMG based accurate and low-complex movement recognition system can be favorable for the potential improvement in quality of life of an amputated persons.
ISSN:2168-2372
2168-2372
DOI:10.1109/JTEHM.2020.3023898