Interior dominating sets and interior domination polynomials of paths
Let G=(V, E) be a undirected simple graph. Let Pn be the path with n vertices and let DId (Pn, i) be the family of interior dominating sets of G with cardinality. Let dId(Pn, i)=∣DId(Pn, i)∣. In this paper, we obtain a recursive formula for dld(Pn, i). Using this recursive formula , we construct the...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G=(V, E) be a undirected simple graph. Let Pn be the path with n vertices and let DId (Pn, i) be the family of interior dominating sets of G with cardinality. Let dId(Pn, i)=∣DId(Pn, i)∣. In this paper, we obtain a recursive formula for dld(Pn, i). Using this recursive formula , we construct the polynomial DId(pn,x)=∑i=|n3|n−2dId(pn,i)xi, which we call interior domination polynomial of Pn and obtain some properties of this polynomial. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0016838 |