Structural and optical properties of transparent, tunable bandgap semiconductor: α-(AlxCr1−x)2O3

Detailed structural and optical properties of α-(AlxCr1−x)2O3 (0 ≤ x ≤ 1) synthesized by the solid state reaction method have been investigated. Single phase α-(AlxCr1−x)2O3 with space group R 3 ¯ c is obtained for the full composition range of 0 ≤ x ≤ 1. Variations in the lattice parameters a and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-10, Vol.128 (13)
Hauptverfasser: Jangir, Ravindra, Srihari, Velaga, Bhakar, Ashok, Kamal, C., Yadav, A. K., Sagdeo, P. R., Kumar, Dharmendra, Tripathi, Shilpa, Jha, S. N., Ganguli, Tapas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detailed structural and optical properties of α-(AlxCr1−x)2O3 (0 ≤ x ≤ 1) synthesized by the solid state reaction method have been investigated. Single phase α-(AlxCr1−x)2O3 with space group R 3 ¯ c is obtained for the full composition range of 0 ≤ x ≤ 1. Variations in the lattice parameters a and c have been determined. Lattice parameter c follows Vegard’s law, while the lattice parameter a shows a clear deviation with a bowing parameter of −0.035 Å. This behavior of the lattice parameters of α-(AlxCr1−x)2O3 with x is explained in detail by studying the local structure. Extended x-ray absorption fine structure spectroscopy shows a reduction in the values of Cr–O bond lengths with composition x. Optical absorption measurements of α-(Al1−xCrx)2O3 for 0 ≤ x ≤ 1 show a large bandgap tunability of 1.9 eV (from 3.4 eV to 5.3 eV). The photoemission spectroscopy data and the analysis of partial density of states obtained from first principles electronic structure calculations suggest that the valence band maxima is mainly composed of Cr 3d levels, which hybridize with the O 2p levels. Increased contribution of O 2p partial density of states is observed with Al substitution, which is expected to enhance p-type carrier conduction in the α-(AlxCr1−x)2O3 system as compared to the parent α-Cr2O3 system. Thus, the large bandgap, its tunability in the UV region, and the predicted enhancement of p-type conductivity in the α-(AlxCr1−x)2O3 system make it a potential candidate for application in UV based photo-detectors and transparent electronics.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0021421