A Kinetic Monte Carlo Study of Retention Time in a POM Molecule-Based Flash Memory

The modelling of conventional and novel memory devices has gained significant traction in recent years. This is primarily because the need to store an increasingly larger amount of data demands a better understanding of the working of the novel memory devices, to enable faster development of the fut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2020, Vol.19, p.704-710
Hauptverfasser: Badami, Oves, Sadi, Toufik, Adamu-Lema, Fikru, Lapham, Paul, Mu, Dejiang, Georgiev, Vihar, Ding, Jie, Asenov, Asen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 710
container_issue
container_start_page 704
container_title IEEE transactions on nanotechnology
container_volume 19
creator Badami, Oves
Sadi, Toufik
Adamu-Lema, Fikru
Lapham, Paul
Mu, Dejiang
Georgiev, Vihar
Ding, Jie
Asenov, Asen
description The modelling of conventional and novel memory devices has gained significant traction in recent years. This is primarily because the need to store an increasingly larger amount of data demands a better understanding of the working of the novel memory devices, to enable faster development of the future technology generations. Furthermore, in-memory computing is also of great interest from the computational perspectives, to overcome the data transfer bottleneck that is prevalent in the von-Neumann architecture. These important factors necessitate the development of comprehensive TCAD simulation tools that can be used for modeling carrier dynamics in the gate oxides of the flash memory cells. In this work, we introduce the kinetic Monte Carlo module that we have developed and integrated within the Nano Electronic Simulation Software (NESS) - to model electronic charge transport in Flash memory type structures. Using the developed module, we perform retention time analysis for a polyoxometalate (POM) molecule-based charge trap flash memory. Our simulation study highlights that retention characteristics for the POM molecules have a unique feature that depends on the properties of the tunneling oxide.
doi_str_mv 10.1109/TNANO.2020.3016182
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2448442025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9172097</ieee_id><sourcerecordid>2448442025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f2c0ebc93d3034e4ff5ca678ee9eb3f028378ebe659dbb4fe3ffb71d9fb307ad3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDpl_MjDy1JRQPSBSpHYWU4yFqnSuNjJon9PSitWc0c6d0Y6hNwyGDEG6mG9GC-WIw4cRgJYwjJ-RgZMSRYBZPF5n2ORRIzHX5fkKoQNAEuTOBuQ1Zi-VQ22VUHnrmmRToyvHf1ou3JPnaUrbLFpK9fQdbVFWjXU0PflvIdrLLoao0cTsKTT2oRvOset8_trcmFNHfDmNIfkc_q0nrxEs-Xz62Q8iwohVBtZXgDmhRKlACFRWhsXJkkzRIW5sMAz0S85JrEq81xaFNbmKSuVzQWkphRDcn-8u_Pup8PQ6o3rfNO_1FzKTMpeR9xT_EgV3oXg0eqdr7bG7zUDfXCn_9zpgzt9cteX7o6lChH_C4qlHFQqfgHrNmpn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448442025</pqid></control><display><type>article</type><title>A Kinetic Monte Carlo Study of Retention Time in a POM Molecule-Based Flash Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Badami, Oves ; Sadi, Toufik ; Adamu-Lema, Fikru ; Lapham, Paul ; Mu, Dejiang ; Georgiev, Vihar ; Ding, Jie ; Asenov, Asen</creator><creatorcontrib>Badami, Oves ; Sadi, Toufik ; Adamu-Lema, Fikru ; Lapham, Paul ; Mu, Dejiang ; Georgiev, Vihar ; Ding, Jie ; Asenov, Asen</creatorcontrib><description>The modelling of conventional and novel memory devices has gained significant traction in recent years. This is primarily because the need to store an increasingly larger amount of data demands a better understanding of the working of the novel memory devices, to enable faster development of the future technology generations. Furthermore, in-memory computing is also of great interest from the computational perspectives, to overcome the data transfer bottleneck that is prevalent in the von-Neumann architecture. These important factors necessitate the development of comprehensive TCAD simulation tools that can be used for modeling carrier dynamics in the gate oxides of the flash memory cells. In this work, we introduce the kinetic Monte Carlo module that we have developed and integrated within the Nano Electronic Simulation Software (NESS) - to model electronic charge transport in Flash memory type structures. Using the developed module, we perform retention time analysis for a polyoxometalate (POM) molecule-based charge trap flash memory. Our simulation study highlights that retention characteristics for the POM molecules have a unique feature that depends on the properties of the tunneling oxide.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2020.3016182</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Charge transport ; Computer simulation ; Data transfer (computers) ; Electrodes ; Electron traps ; flash memory ; Flash memory (computers) ; kinetic Monte Carlo ; Kinetic theory ; Logic gates ; Memory devices ; Modules ; Monte Carlo methods ; Phonons ; polyoxometalate ; Polyoxometallates ; Simulation ; Tunneling</subject><ispartof>IEEE transactions on nanotechnology, 2020, Vol.19, p.704-710</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-f2c0ebc93d3034e4ff5ca678ee9eb3f028378ebe659dbb4fe3ffb71d9fb307ad3</citedby><cites>FETCH-LOGICAL-c339t-f2c0ebc93d3034e4ff5ca678ee9eb3f028378ebe659dbb4fe3ffb71d9fb307ad3</cites><orcidid>0000-0001-6473-2508 ; 0000-0002-2041-8653 ; 0000-0003-1451-5163 ; 0000-0002-5858-434X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9172097$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9172097$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badami, Oves</creatorcontrib><creatorcontrib>Sadi, Toufik</creatorcontrib><creatorcontrib>Adamu-Lema, Fikru</creatorcontrib><creatorcontrib>Lapham, Paul</creatorcontrib><creatorcontrib>Mu, Dejiang</creatorcontrib><creatorcontrib>Georgiev, Vihar</creatorcontrib><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Asenov, Asen</creatorcontrib><title>A Kinetic Monte Carlo Study of Retention Time in a POM Molecule-Based Flash Memory</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>The modelling of conventional and novel memory devices has gained significant traction in recent years. This is primarily because the need to store an increasingly larger amount of data demands a better understanding of the working of the novel memory devices, to enable faster development of the future technology generations. Furthermore, in-memory computing is also of great interest from the computational perspectives, to overcome the data transfer bottleneck that is prevalent in the von-Neumann architecture. These important factors necessitate the development of comprehensive TCAD simulation tools that can be used for modeling carrier dynamics in the gate oxides of the flash memory cells. In this work, we introduce the kinetic Monte Carlo module that we have developed and integrated within the Nano Electronic Simulation Software (NESS) - to model electronic charge transport in Flash memory type structures. Using the developed module, we perform retention time analysis for a polyoxometalate (POM) molecule-based charge trap flash memory. Our simulation study highlights that retention characteristics for the POM molecules have a unique feature that depends on the properties of the tunneling oxide.</description><subject>Charge transport</subject><subject>Computer simulation</subject><subject>Data transfer (computers)</subject><subject>Electrodes</subject><subject>Electron traps</subject><subject>flash memory</subject><subject>Flash memory (computers)</subject><subject>kinetic Monte Carlo</subject><subject>Kinetic theory</subject><subject>Logic gates</subject><subject>Memory devices</subject><subject>Modules</subject><subject>Monte Carlo methods</subject><subject>Phonons</subject><subject>polyoxometalate</subject><subject>Polyoxometallates</subject><subject>Simulation</subject><subject>Tunneling</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDpl_MjDy1JRQPSBSpHYWU4yFqnSuNjJon9PSitWc0c6d0Y6hNwyGDEG6mG9GC-WIw4cRgJYwjJ-RgZMSRYBZPF5n2ORRIzHX5fkKoQNAEuTOBuQ1Zi-VQ22VUHnrmmRToyvHf1ou3JPnaUrbLFpK9fQdbVFWjXU0PflvIdrLLoao0cTsKTT2oRvOset8_trcmFNHfDmNIfkc_q0nrxEs-Xz62Q8iwohVBtZXgDmhRKlACFRWhsXJkkzRIW5sMAz0S85JrEq81xaFNbmKSuVzQWkphRDcn-8u_Pup8PQ6o3rfNO_1FzKTMpeR9xT_EgV3oXg0eqdr7bG7zUDfXCn_9zpgzt9cteX7o6lChH_C4qlHFQqfgHrNmpn</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Badami, Oves</creator><creator>Sadi, Toufik</creator><creator>Adamu-Lema, Fikru</creator><creator>Lapham, Paul</creator><creator>Mu, Dejiang</creator><creator>Georgiev, Vihar</creator><creator>Ding, Jie</creator><creator>Asenov, Asen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6473-2508</orcidid><orcidid>https://orcid.org/0000-0002-2041-8653</orcidid><orcidid>https://orcid.org/0000-0003-1451-5163</orcidid><orcidid>https://orcid.org/0000-0002-5858-434X</orcidid></search><sort><creationdate>2020</creationdate><title>A Kinetic Monte Carlo Study of Retention Time in a POM Molecule-Based Flash Memory</title><author>Badami, Oves ; Sadi, Toufik ; Adamu-Lema, Fikru ; Lapham, Paul ; Mu, Dejiang ; Georgiev, Vihar ; Ding, Jie ; Asenov, Asen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f2c0ebc93d3034e4ff5ca678ee9eb3f028378ebe659dbb4fe3ffb71d9fb307ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge transport</topic><topic>Computer simulation</topic><topic>Data transfer (computers)</topic><topic>Electrodes</topic><topic>Electron traps</topic><topic>flash memory</topic><topic>Flash memory (computers)</topic><topic>kinetic Monte Carlo</topic><topic>Kinetic theory</topic><topic>Logic gates</topic><topic>Memory devices</topic><topic>Modules</topic><topic>Monte Carlo methods</topic><topic>Phonons</topic><topic>polyoxometalate</topic><topic>Polyoxometallates</topic><topic>Simulation</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badami, Oves</creatorcontrib><creatorcontrib>Sadi, Toufik</creatorcontrib><creatorcontrib>Adamu-Lema, Fikru</creatorcontrib><creatorcontrib>Lapham, Paul</creatorcontrib><creatorcontrib>Mu, Dejiang</creatorcontrib><creatorcontrib>Georgiev, Vihar</creatorcontrib><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Asenov, Asen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badami, Oves</au><au>Sadi, Toufik</au><au>Adamu-Lema, Fikru</au><au>Lapham, Paul</au><au>Mu, Dejiang</au><au>Georgiev, Vihar</au><au>Ding, Jie</au><au>Asenov, Asen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Kinetic Monte Carlo Study of Retention Time in a POM Molecule-Based Flash Memory</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2020</date><risdate>2020</risdate><volume>19</volume><spage>704</spage><epage>710</epage><pages>704-710</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>The modelling of conventional and novel memory devices has gained significant traction in recent years. This is primarily because the need to store an increasingly larger amount of data demands a better understanding of the working of the novel memory devices, to enable faster development of the future technology generations. Furthermore, in-memory computing is also of great interest from the computational perspectives, to overcome the data transfer bottleneck that is prevalent in the von-Neumann architecture. These important factors necessitate the development of comprehensive TCAD simulation tools that can be used for modeling carrier dynamics in the gate oxides of the flash memory cells. In this work, we introduce the kinetic Monte Carlo module that we have developed and integrated within the Nano Electronic Simulation Software (NESS) - to model electronic charge transport in Flash memory type structures. Using the developed module, we perform retention time analysis for a polyoxometalate (POM) molecule-based charge trap flash memory. Our simulation study highlights that retention characteristics for the POM molecules have a unique feature that depends on the properties of the tunneling oxide.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2020.3016182</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6473-2508</orcidid><orcidid>https://orcid.org/0000-0002-2041-8653</orcidid><orcidid>https://orcid.org/0000-0003-1451-5163</orcidid><orcidid>https://orcid.org/0000-0002-5858-434X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2020, Vol.19, p.704-710
issn 1536-125X
1941-0085
language eng
recordid cdi_proquest_journals_2448442025
source IEEE Electronic Library (IEL)
subjects Charge transport
Computer simulation
Data transfer (computers)
Electrodes
Electron traps
flash memory
Flash memory (computers)
kinetic Monte Carlo
Kinetic theory
Logic gates
Memory devices
Modules
Monte Carlo methods
Phonons
polyoxometalate
Polyoxometallates
Simulation
Tunneling
title A Kinetic Monte Carlo Study of Retention Time in a POM Molecule-Based Flash Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Kinetic%20Monte%20Carlo%20Study%20of%20Retention%20Time%20in%20a%20POM%20Molecule-Based%20Flash%20Memory&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Badami,%20Oves&rft.date=2020&rft.volume=19&rft.spage=704&rft.epage=710&rft.pages=704-710&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2020.3016182&rft_dat=%3Cproquest_RIE%3E2448442025%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448442025&rft_id=info:pmid/&rft_ieee_id=9172097&rfr_iscdi=true