A Kinetic Monte Carlo Study of Retention Time in a POM Molecule-Based Flash Memory
The modelling of conventional and novel memory devices has gained significant traction in recent years. This is primarily because the need to store an increasingly larger amount of data demands a better understanding of the working of the novel memory devices, to enable faster development of the fut...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2020, Vol.19, p.704-710 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 710 |
---|---|
container_issue | |
container_start_page | 704 |
container_title | IEEE transactions on nanotechnology |
container_volume | 19 |
creator | Badami, Oves Sadi, Toufik Adamu-Lema, Fikru Lapham, Paul Mu, Dejiang Georgiev, Vihar Ding, Jie Asenov, Asen |
description | The modelling of conventional and novel memory devices has gained significant traction in recent years. This is primarily because the need to store an increasingly larger amount of data demands a better understanding of the working of the novel memory devices, to enable faster development of the future technology generations. Furthermore, in-memory computing is also of great interest from the computational perspectives, to overcome the data transfer bottleneck that is prevalent in the von-Neumann architecture. These important factors necessitate the development of comprehensive TCAD simulation tools that can be used for modeling carrier dynamics in the gate oxides of the flash memory cells. In this work, we introduce the kinetic Monte Carlo module that we have developed and integrated within the Nano Electronic Simulation Software (NESS) - to model electronic charge transport in Flash memory type structures. Using the developed module, we perform retention time analysis for a polyoxometalate (POM) molecule-based charge trap flash memory. Our simulation study highlights that retention characteristics for the POM molecules have a unique feature that depends on the properties of the tunneling oxide. |
doi_str_mv | 10.1109/TNANO.2020.3016182 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2448442025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9172097</ieee_id><sourcerecordid>2448442025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f2c0ebc93d3034e4ff5ca678ee9eb3f028378ebe659dbb4fe3ffb71d9fb307ad3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDpl_MjDy1JRQPSBSpHYWU4yFqnSuNjJon9PSitWc0c6d0Y6hNwyGDEG6mG9GC-WIw4cRgJYwjJ-RgZMSRYBZPF5n2ORRIzHX5fkKoQNAEuTOBuQ1Zi-VQ22VUHnrmmRToyvHf1ou3JPnaUrbLFpK9fQdbVFWjXU0PflvIdrLLoao0cTsKTT2oRvOset8_trcmFNHfDmNIfkc_q0nrxEs-Xz62Q8iwohVBtZXgDmhRKlACFRWhsXJkkzRIW5sMAz0S85JrEq81xaFNbmKSuVzQWkphRDcn-8u_Pup8PQ6o3rfNO_1FzKTMpeR9xT_EgV3oXg0eqdr7bG7zUDfXCn_9zpgzt9cteX7o6lChH_C4qlHFQqfgHrNmpn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448442025</pqid></control><display><type>article</type><title>A Kinetic Monte Carlo Study of Retention Time in a POM Molecule-Based Flash Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Badami, Oves ; Sadi, Toufik ; Adamu-Lema, Fikru ; Lapham, Paul ; Mu, Dejiang ; Georgiev, Vihar ; Ding, Jie ; Asenov, Asen</creator><creatorcontrib>Badami, Oves ; Sadi, Toufik ; Adamu-Lema, Fikru ; Lapham, Paul ; Mu, Dejiang ; Georgiev, Vihar ; Ding, Jie ; Asenov, Asen</creatorcontrib><description>The modelling of conventional and novel memory devices has gained significant traction in recent years. This is primarily because the need to store an increasingly larger amount of data demands a better understanding of the working of the novel memory devices, to enable faster development of the future technology generations. Furthermore, in-memory computing is also of great interest from the computational perspectives, to overcome the data transfer bottleneck that is prevalent in the von-Neumann architecture. These important factors necessitate the development of comprehensive TCAD simulation tools that can be used for modeling carrier dynamics in the gate oxides of the flash memory cells. In this work, we introduce the kinetic Monte Carlo module that we have developed and integrated within the Nano Electronic Simulation Software (NESS) - to model electronic charge transport in Flash memory type structures. Using the developed module, we perform retention time analysis for a polyoxometalate (POM) molecule-based charge trap flash memory. Our simulation study highlights that retention characteristics for the POM molecules have a unique feature that depends on the properties of the tunneling oxide.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2020.3016182</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Charge transport ; Computer simulation ; Data transfer (computers) ; Electrodes ; Electron traps ; flash memory ; Flash memory (computers) ; kinetic Monte Carlo ; Kinetic theory ; Logic gates ; Memory devices ; Modules ; Monte Carlo methods ; Phonons ; polyoxometalate ; Polyoxometallates ; Simulation ; Tunneling</subject><ispartof>IEEE transactions on nanotechnology, 2020, Vol.19, p.704-710</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-f2c0ebc93d3034e4ff5ca678ee9eb3f028378ebe659dbb4fe3ffb71d9fb307ad3</citedby><cites>FETCH-LOGICAL-c339t-f2c0ebc93d3034e4ff5ca678ee9eb3f028378ebe659dbb4fe3ffb71d9fb307ad3</cites><orcidid>0000-0001-6473-2508 ; 0000-0002-2041-8653 ; 0000-0003-1451-5163 ; 0000-0002-5858-434X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9172097$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9172097$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badami, Oves</creatorcontrib><creatorcontrib>Sadi, Toufik</creatorcontrib><creatorcontrib>Adamu-Lema, Fikru</creatorcontrib><creatorcontrib>Lapham, Paul</creatorcontrib><creatorcontrib>Mu, Dejiang</creatorcontrib><creatorcontrib>Georgiev, Vihar</creatorcontrib><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Asenov, Asen</creatorcontrib><title>A Kinetic Monte Carlo Study of Retention Time in a POM Molecule-Based Flash Memory</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>The modelling of conventional and novel memory devices has gained significant traction in recent years. This is primarily because the need to store an increasingly larger amount of data demands a better understanding of the working of the novel memory devices, to enable faster development of the future technology generations. Furthermore, in-memory computing is also of great interest from the computational perspectives, to overcome the data transfer bottleneck that is prevalent in the von-Neumann architecture. These important factors necessitate the development of comprehensive TCAD simulation tools that can be used for modeling carrier dynamics in the gate oxides of the flash memory cells. In this work, we introduce the kinetic Monte Carlo module that we have developed and integrated within the Nano Electronic Simulation Software (NESS) - to model electronic charge transport in Flash memory type structures. Using the developed module, we perform retention time analysis for a polyoxometalate (POM) molecule-based charge trap flash memory. Our simulation study highlights that retention characteristics for the POM molecules have a unique feature that depends on the properties of the tunneling oxide.</description><subject>Charge transport</subject><subject>Computer simulation</subject><subject>Data transfer (computers)</subject><subject>Electrodes</subject><subject>Electron traps</subject><subject>flash memory</subject><subject>Flash memory (computers)</subject><subject>kinetic Monte Carlo</subject><subject>Kinetic theory</subject><subject>Logic gates</subject><subject>Memory devices</subject><subject>Modules</subject><subject>Monte Carlo methods</subject><subject>Phonons</subject><subject>polyoxometalate</subject><subject>Polyoxometallates</subject><subject>Simulation</subject><subject>Tunneling</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDpl_MjDy1JRQPSBSpHYWU4yFqnSuNjJon9PSitWc0c6d0Y6hNwyGDEG6mG9GC-WIw4cRgJYwjJ-RgZMSRYBZPF5n2ORRIzHX5fkKoQNAEuTOBuQ1Zi-VQ22VUHnrmmRToyvHf1ou3JPnaUrbLFpK9fQdbVFWjXU0PflvIdrLLoao0cTsKTT2oRvOset8_trcmFNHfDmNIfkc_q0nrxEs-Xz62Q8iwohVBtZXgDmhRKlACFRWhsXJkkzRIW5sMAz0S85JrEq81xaFNbmKSuVzQWkphRDcn-8u_Pup8PQ6o3rfNO_1FzKTMpeR9xT_EgV3oXg0eqdr7bG7zUDfXCn_9zpgzt9cteX7o6lChH_C4qlHFQqfgHrNmpn</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Badami, Oves</creator><creator>Sadi, Toufik</creator><creator>Adamu-Lema, Fikru</creator><creator>Lapham, Paul</creator><creator>Mu, Dejiang</creator><creator>Georgiev, Vihar</creator><creator>Ding, Jie</creator><creator>Asenov, Asen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6473-2508</orcidid><orcidid>https://orcid.org/0000-0002-2041-8653</orcidid><orcidid>https://orcid.org/0000-0003-1451-5163</orcidid><orcidid>https://orcid.org/0000-0002-5858-434X</orcidid></search><sort><creationdate>2020</creationdate><title>A Kinetic Monte Carlo Study of Retention Time in a POM Molecule-Based Flash Memory</title><author>Badami, Oves ; Sadi, Toufik ; Adamu-Lema, Fikru ; Lapham, Paul ; Mu, Dejiang ; Georgiev, Vihar ; Ding, Jie ; Asenov, Asen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f2c0ebc93d3034e4ff5ca678ee9eb3f028378ebe659dbb4fe3ffb71d9fb307ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge transport</topic><topic>Computer simulation</topic><topic>Data transfer (computers)</topic><topic>Electrodes</topic><topic>Electron traps</topic><topic>flash memory</topic><topic>Flash memory (computers)</topic><topic>kinetic Monte Carlo</topic><topic>Kinetic theory</topic><topic>Logic gates</topic><topic>Memory devices</topic><topic>Modules</topic><topic>Monte Carlo methods</topic><topic>Phonons</topic><topic>polyoxometalate</topic><topic>Polyoxometallates</topic><topic>Simulation</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badami, Oves</creatorcontrib><creatorcontrib>Sadi, Toufik</creatorcontrib><creatorcontrib>Adamu-Lema, Fikru</creatorcontrib><creatorcontrib>Lapham, Paul</creatorcontrib><creatorcontrib>Mu, Dejiang</creatorcontrib><creatorcontrib>Georgiev, Vihar</creatorcontrib><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Asenov, Asen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badami, Oves</au><au>Sadi, Toufik</au><au>Adamu-Lema, Fikru</au><au>Lapham, Paul</au><au>Mu, Dejiang</au><au>Georgiev, Vihar</au><au>Ding, Jie</au><au>Asenov, Asen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Kinetic Monte Carlo Study of Retention Time in a POM Molecule-Based Flash Memory</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2020</date><risdate>2020</risdate><volume>19</volume><spage>704</spage><epage>710</epage><pages>704-710</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>The modelling of conventional and novel memory devices has gained significant traction in recent years. This is primarily because the need to store an increasingly larger amount of data demands a better understanding of the working of the novel memory devices, to enable faster development of the future technology generations. Furthermore, in-memory computing is also of great interest from the computational perspectives, to overcome the data transfer bottleneck that is prevalent in the von-Neumann architecture. These important factors necessitate the development of comprehensive TCAD simulation tools that can be used for modeling carrier dynamics in the gate oxides of the flash memory cells. In this work, we introduce the kinetic Monte Carlo module that we have developed and integrated within the Nano Electronic Simulation Software (NESS) - to model electronic charge transport in Flash memory type structures. Using the developed module, we perform retention time analysis for a polyoxometalate (POM) molecule-based charge trap flash memory. Our simulation study highlights that retention characteristics for the POM molecules have a unique feature that depends on the properties of the tunneling oxide.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2020.3016182</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6473-2508</orcidid><orcidid>https://orcid.org/0000-0002-2041-8653</orcidid><orcidid>https://orcid.org/0000-0003-1451-5163</orcidid><orcidid>https://orcid.org/0000-0002-5858-434X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2020, Vol.19, p.704-710 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_proquest_journals_2448442025 |
source | IEEE Electronic Library (IEL) |
subjects | Charge transport Computer simulation Data transfer (computers) Electrodes Electron traps flash memory Flash memory (computers) kinetic Monte Carlo Kinetic theory Logic gates Memory devices Modules Monte Carlo methods Phonons polyoxometalate Polyoxometallates Simulation Tunneling |
title | A Kinetic Monte Carlo Study of Retention Time in a POM Molecule-Based Flash Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Kinetic%20Monte%20Carlo%20Study%20of%20Retention%20Time%20in%20a%20POM%20Molecule-Based%20Flash%20Memory&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Badami,%20Oves&rft.date=2020&rft.volume=19&rft.spage=704&rft.epage=710&rft.pages=704-710&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2020.3016182&rft_dat=%3Cproquest_RIE%3E2448442025%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448442025&rft_id=info:pmid/&rft_ieee_id=9172097&rfr_iscdi=true |