Wide-angle mode parabolic equations for the modelling of horizontal refraction in underwater acoustics and their numerical solution on unbounded domains

The modelling of sound propagation in the ocean by the solution of mode parabolic equations is discussed. Mode parabolic equations can be obtained as the one-way approximation to horizontal refraction equations for modal amplitudes. Their wide-angle capabilities depend on the order of the Padé appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2020-10, Vol.484, p.115526, Article 115526
Hauptverfasser: Petrov, Pavel S., Ehrhardt, Matthias, Tyshchenko, Andrey G., Petrov, Petr N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The modelling of sound propagation in the ocean by the solution of mode parabolic equations is discussed. Mode parabolic equations can be obtained as the one-way approximation to horizontal refraction equations for modal amplitudes. Their wide-angle capabilities depend on the order of the Padé approximation of the involved pseudo-differential operators. Various aspects of numerical solution methods for wide-angle mode parabolic equations are considered in detail, including artificial domain truncation and Cauchy initial data for the point source field approximation. The capabilities of the discussed numerical approaches are demonstrated in several important test cases, including the problems of sound propagation in a penetrable wedge and in a sea with an underwater canyon.
ISSN:0022-460X
1095-8568
DOI:10.1016/j.jsv.2020.115526