Synthesis of nickel hydroxide/delaminated-Ti3C2 MXene nanosheets as promising anode material for high performance lithium ion battery
In the present work, nickel hydroxide modified delaminated-Ti3C2 sheets (Ni(OH)2/d-Ti3C2) were synthetized by the hydrothermal method in order to overcome the capacity degradation caused by the terminal functional groups of Ti3C2-MXenes. Due to synergetic effects, the obtained Ni(OH)2/d-Ti3C2 displa...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2020-11, Vol.842, p.155812, Article 155812 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present work, nickel hydroxide modified delaminated-Ti3C2 sheets (Ni(OH)2/d-Ti3C2) were synthetized by the hydrothermal method in order to overcome the capacity degradation caused by the terminal functional groups of Ti3C2-MXenes. Due to synergetic effects, the obtained Ni(OH)2/d-Ti3C2 displayed a capacity of 732.6 mA h g−1 at 0.1 A g−1, ∼6.0 times higher than that of d-Ti3C2 (∼121.3 mA h g−1), and ∼6.2 times higher than that of Ni(OH)2 (∼117.6 mA h g−1). Moreover, a higher reversible capacity of 372.0 mA h g−1 after 1000 cycles without apparent capacity decay at 1 A g−1 was obtained. This enhanced performance can be caused by the higher lithium ion diffusion coefficient in Ni(OH)2/d-Ti3C2 (2.5 × 10−14 cm2 s−1), ∼284.1 times higher than that of Ni(OH)2 (8.8 × 10−17 cm2 s−1) and ∼7.1 times higher than that of d-Ti3C2 (3.5 × 10−15 cm2 s−1). DFT calculations further confirmed that the Ni(OH)2/d-Ti3C2 can be a good candidate for the anode materials of lithium ion batteries.
[Display omitted]
•Ni(OH)2/d-Ti3C2 composite was synthesized by one-step hydrothermal method.•The well-wrapped Ni(OH)2 was grown on the d-Ti3C2 MXene flakes.•This surface engineering improved capacity and cycle performance of d-Ti3C2 MXene. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2020.155812 |