Interference Prediction in Wireless Networks: Stochastic Geometry meets Recursive Filtering
This article proposes and evaluates a technique to predict the level of interference in wireless networks. We design a recursive predictor that estimates future interference values by filtering measured interference at a given location. The predictor's parameterization is done offline by transl...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article proposes and evaluates a technique to predict the level of interference in wireless networks. We design a recursive predictor that estimates future interference values by filtering measured interference at a given location. The predictor's parameterization is done offline by translating the autocorrelation of interference into an autoregressive moving average (ARMA) representation. This ARMA model is inserted into a steady-state Kalman filter enabling nodes to predict with low computational effort. Results show a good accuracy of predicted values versus true values for relevant time horizons. Although the predictor is parameterized for Poisson-distributed nodes, Rayleigh fading, and fixed message lengths, a sensitivity analysis shows that it also tends to work well in more general network scenarios. Numerical examples for underlay device-to-device communications, a common wireless sensor technology, and coexistence scenarios of Wi-Fi and LTE illustrate its broad applicability. The predictor can be applied as part of interference management to improve medium access, scheduling, and radio resource allocation. |
---|---|
ISSN: | 2331-8422 |