Superpixel Based Hierarchical Segmentation for Color Image
In this letter, we propose a hierarchical segmentation (HS) method for color images, which can not only maintain the segmentation accuracy, but also ensure a good speed. In our method, HS adopts the fuzzy simple linear iterative clustering (Fuzzy SLIC) to obtain an over-segmentation result. Then, HS...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2020/10/01, Vol.E103.D(10), pp.2246-2249 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, we propose a hierarchical segmentation (HS) method for color images, which can not only maintain the segmentation accuracy, but also ensure a good speed. In our method, HS adopts the fuzzy simple linear iterative clustering (Fuzzy SLIC) to obtain an over-segmentation result. Then, HS uses the fast fuzzy C-means clustering (FFCM) to produce the rough segmentation result based on superpixels. Finally, HS takes the non-iterative K-means clustering using priority queue (KPQ) to refine the segmentation result. In the validation experiments, we tested our method and compared it with state-of-the-art image segmentation methods on the Berkeley (BSD500) benchmark under different types of noise. The experiment results show that our method outperforms state-of-the-art techniques in terms of accuracy, speed and robustness. |
---|---|
ISSN: | 0916-8532 1745-1361 |
DOI: | 10.1587/transinf.2020EDL8025 |