ADENOVIRAL-MEDIATED GENE TRANSFERINTO THE CANINE BRAIN IN VIVO
OBJECTIVE Glioblastoma multiforme (GBM) is a devastating brain tumor for which there is no cure. Adenoviral-mediated transfer of conditional cytotoxic (herpes simplex virus [HSV] 1-derived thymidine kinase [TK]) and immunostimulatory (Fms-like tyrosine kinase 3 ligand [Flt3L]) transgenes elicited im...
Gespeichert in:
Veröffentlicht in: | Neurosurgery 2007-01, Vol.60 (1), p.167-178 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | OBJECTIVE Glioblastoma multiforme (GBM) is a devastating brain tumor for which there is no cure. Adenoviral-mediated transfer of conditional cytotoxic (herpes simplex virus [HSV] 1-derived thymidine kinase [TK]) and immunostimulatory (Fms-like tyrosine kinase 3 ligand [Flt3L]) transgenes elicited immune-mediated long-term survival in a syngeneic intracranial GBM model in rodents. However, the lack of a large GBM animal model makes it difficult to predict the outcome of therapies in humans. Dogs develop spontaneous GBM that closely resemble the human disease; therefore, they constitute an excellent large animal model. We assayed the transduction efficiency of adenoviral vectors (Ads) encoding β-galactosidase (βGal), TK, and Flt3L in J3T dog GBM cells in vitro and in the dog brain in vivo. METHODS J3T cells were infected with Ads (30 plaque-forming units/cell; 72 h) encoding βGal (Ad-βGal), TK (Ad-TK), or Flt3L (Ad-Flt3L). We determined transgene expression by immunocytochemistry, βGal activity, Flt3L enzyme-linked immunosorbent assay, and TK-induced cell death. Ads were also injected intracranially into the parietal cortex of healthy dogs. We determined cell-type specific transgene expression and immune cell infiltration. RESULTS Adenoviral-mediated gene transfer of HSV1-TK, Flt3L, and βGal was detected in dog glioma cells in vitro (45% transduction efficiency) and in the dog brain in vivo (10-mm2area transduced surrounding each injection site). T cells and macrophages/activated microglia infiltrated the injection sites. Importantly, no adverse clinical or neuropathological side effects were observed. CONCLUSION We demonstrate effective adenoviral-mediated gene transfer into the brain of dogs in vivo and support the use of these vectors to develop an efficacy trial for canine GBM as a prelude to human trials. |
---|---|
ISSN: | 0148-396X 1524-4040 |
DOI: | 10.1227/01.NEU.0000249210.89096.6C |