Distance-based methods for estimating density of nonrandomly distributed populations
Population density is the most basic ecological parameter for understanding population dynamics and biological conservation. Distance-based methods (or plotless methods) are considered as a more efficient but less robust approach than quadrat-based counting methods in estimating plant population den...
Gespeichert in:
Veröffentlicht in: | Ecology (Durham) 2020-10, Vol.101 (10), p.1-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | Ecology (Durham) |
container_volume | 101 |
creator | Shen, Guochun Wang, Xihua Iang, Fangl |
description | Population density is the most basic ecological parameter for understanding population dynamics and biological conservation. Distance-based methods (or plotless methods) are considered as a more efficient but less robust approach than quadrat-based counting methods in estimating plant population density. The low robustness of distance-based methods mainly arises from the oversimplistic assumption of completely spatially random (CSR) distribution of a population in the conventional distance-based methods for estimating density of non-CSR populations in natural communities. In this study we derived two methods to improve on density estimation for plant populations of non-CSR distribution. The first method modified an existing composite estimator to correct for the long-recognized bias associated with that estimator. The second method was derived from the negative binomial distribution (NBD) that directly deals with aggregation in the distribution of a species. The performance of these estimators was tested and compared against various distance-based estimators by both simulation and empirical data of three large-scale stem-mapped forests. Results showed that the NBD point-to-tree distance estimator has the best and most consistent performance across populations with vastly different spatial distributions. This estimator offers a simple, efficient and robust method for estimating density for empirical populations of plant species |
doi_str_mv | 10.1002/ecy.3143 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2447561505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26997987</jstor_id><sourcerecordid>26997987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3713-c0a303debdc5f98f054611d4a2dcc6bb9beed8a549b6e04d7717d69d6d4cc92f3</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgWgpSLwAKBILS4od3-IRlXKRKrGUgclybAdSJXGwE6G8Pa5S2PDi5Tu_fX4ALhFcIgizO6vHJUYEH4E5ElikAnF4DOYQoiwVjOYzcBbCDsaDSH4KZhgTkmMK52D7UIVetdqmhQrWJI3tP50JSel8YkNfNaqv2o_E2DZU_Zi4Mmld61VrXFOPiYnDviqGPk52rhvqqF0bzsFJqepgLw73Arw9rrer53Tz-vSyut-kGnOEUw0VhtjYwmhairyElDCEDFGZ0ZoVhSisNbmiRBTMQmI4R9wwYZghWousxAtwM-V23n0N8bty5wbfxidlRginDFFIo7qdlPYuBG9L2fm4lx8lgnJfn4z1yX19kV4fAoeiseYP_vYVQTqB76q2479Bcr16PwReTX4Xeuf_fMaE4CLn-Ade1YRj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447561505</pqid></control><display><type>article</type><title>Distance-based methods for estimating density of nonrandomly distributed populations</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shen, Guochun ; Wang, Xihua ; Iang, Fangl</creator><creatorcontrib>Shen, Guochun ; Wang, Xihua ; Iang, Fangl</creatorcontrib><description>Population density is the most basic ecological parameter for understanding population dynamics and biological conservation. Distance-based methods (or plotless methods) are considered as a more efficient but less robust approach than quadrat-based counting methods in estimating plant population density. The low robustness of distance-based methods mainly arises from the oversimplistic assumption of completely spatially random (CSR) distribution of a population in the conventional distance-based methods for estimating density of non-CSR populations in natural communities. In this study we derived two methods to improve on density estimation for plant populations of non-CSR distribution. The first method modified an existing composite estimator to correct for the long-recognized bias associated with that estimator. The second method was derived from the negative binomial distribution (NBD) that directly deals with aggregation in the distribution of a species. The performance of these estimators was tested and compared against various distance-based estimators by both simulation and empirical data of three large-scale stem-mapped forests. Results showed that the NBD point-to-tree distance estimator has the best and most consistent performance across populations with vastly different spatial distributions. This estimator offers a simple, efficient and robust method for estimating density for empirical populations of plant species</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1002/ecy.3143</identifier><identifier>PMID: 33448350</identifier><language>eng</language><publisher>United States: John Wiley and Sons, Inc</publisher><subject>Bias ; Binomial distribution ; Computer Simulation ; Counting methods ; distance‐based methods ; Estimation ; Estimators ; Forests ; Geographical distribution ; nearest‐neighbor distance ; negative binomial distribution ; Plant populations ; Planting density ; plotless method ; Population Density ; population density estimator ; Population dynamics ; Robustness ; Spatial distribution ; spatial distribution of species ; Trees ; Wildlife conservation</subject><ispartof>Ecology (Durham), 2020-10, Vol.101 (10), p.1-9</ispartof><rights>2020 by the Ecological Society of America</rights><rights>2020 by the Ecological Society of America.</rights><rights>2020 Ecological Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3713-c0a303debdc5f98f054611d4a2dcc6bb9beed8a549b6e04d7717d69d6d4cc92f3</citedby><cites>FETCH-LOGICAL-c3713-c0a303debdc5f98f054611d4a2dcc6bb9beed8a549b6e04d7717d69d6d4cc92f3</cites><orcidid>0000-0001-9853-6062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26997987$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26997987$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33448350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Guochun</creatorcontrib><creatorcontrib>Wang, Xihua</creatorcontrib><creatorcontrib>Iang, Fangl</creatorcontrib><title>Distance-based methods for estimating density of nonrandomly distributed populations</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Population density is the most basic ecological parameter for understanding population dynamics and biological conservation. Distance-based methods (or plotless methods) are considered as a more efficient but less robust approach than quadrat-based counting methods in estimating plant population density. The low robustness of distance-based methods mainly arises from the oversimplistic assumption of completely spatially random (CSR) distribution of a population in the conventional distance-based methods for estimating density of non-CSR populations in natural communities. In this study we derived two methods to improve on density estimation for plant populations of non-CSR distribution. The first method modified an existing composite estimator to correct for the long-recognized bias associated with that estimator. The second method was derived from the negative binomial distribution (NBD) that directly deals with aggregation in the distribution of a species. The performance of these estimators was tested and compared against various distance-based estimators by both simulation and empirical data of three large-scale stem-mapped forests. Results showed that the NBD point-to-tree distance estimator has the best and most consistent performance across populations with vastly different spatial distributions. This estimator offers a simple, efficient and robust method for estimating density for empirical populations of plant species</description><subject>Bias</subject><subject>Binomial distribution</subject><subject>Computer Simulation</subject><subject>Counting methods</subject><subject>distance‐based methods</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Forests</subject><subject>Geographical distribution</subject><subject>nearest‐neighbor distance</subject><subject>negative binomial distribution</subject><subject>Plant populations</subject><subject>Planting density</subject><subject>plotless method</subject><subject>Population Density</subject><subject>population density estimator</subject><subject>Population dynamics</subject><subject>Robustness</subject><subject>Spatial distribution</subject><subject>spatial distribution of species</subject><subject>Trees</subject><subject>Wildlife conservation</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10LtOwzAUBmALgWgpSLwAKBILS4od3-IRlXKRKrGUgclybAdSJXGwE6G8Pa5S2PDi5Tu_fX4ALhFcIgizO6vHJUYEH4E5ElikAnF4DOYQoiwVjOYzcBbCDsaDSH4KZhgTkmMK52D7UIVetdqmhQrWJI3tP50JSel8YkNfNaqv2o_E2DZU_Zi4Mmld61VrXFOPiYnDviqGPk52rhvqqF0bzsFJqepgLw73Arw9rrer53Tz-vSyut-kGnOEUw0VhtjYwmhairyElDCEDFGZ0ZoVhSisNbmiRBTMQmI4R9wwYZghWousxAtwM-V23n0N8bty5wbfxidlRginDFFIo7qdlPYuBG9L2fm4lx8lgnJfn4z1yX19kV4fAoeiseYP_vYVQTqB76q2479Bcr16PwReTX4Xeuf_fMaE4CLn-Ade1YRj</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Shen, Guochun</creator><creator>Wang, Xihua</creator><creator>Iang, Fangl</creator><general>John Wiley and Sons, Inc</general><general>Ecological Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9853-6062</orcidid></search><sort><creationdate>20201001</creationdate><title>Distance-based methods for estimating density of nonrandomly distributed populations</title><author>Shen, Guochun ; Wang, Xihua ; Iang, Fangl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3713-c0a303debdc5f98f054611d4a2dcc6bb9beed8a549b6e04d7717d69d6d4cc92f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bias</topic><topic>Binomial distribution</topic><topic>Computer Simulation</topic><topic>Counting methods</topic><topic>distance‐based methods</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Forests</topic><topic>Geographical distribution</topic><topic>nearest‐neighbor distance</topic><topic>negative binomial distribution</topic><topic>Plant populations</topic><topic>Planting density</topic><topic>plotless method</topic><topic>Population Density</topic><topic>population density estimator</topic><topic>Population dynamics</topic><topic>Robustness</topic><topic>Spatial distribution</topic><topic>spatial distribution of species</topic><topic>Trees</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Guochun</creatorcontrib><creatorcontrib>Wang, Xihua</creatorcontrib><creatorcontrib>Iang, Fangl</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Guochun</au><au>Wang, Xihua</au><au>Iang, Fangl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distance-based methods for estimating density of nonrandomly distributed populations</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>101</volume><issue>10</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><abstract>Population density is the most basic ecological parameter for understanding population dynamics and biological conservation. Distance-based methods (or plotless methods) are considered as a more efficient but less robust approach than quadrat-based counting methods in estimating plant population density. The low robustness of distance-based methods mainly arises from the oversimplistic assumption of completely spatially random (CSR) distribution of a population in the conventional distance-based methods for estimating density of non-CSR populations in natural communities. In this study we derived two methods to improve on density estimation for plant populations of non-CSR distribution. The first method modified an existing composite estimator to correct for the long-recognized bias associated with that estimator. The second method was derived from the negative binomial distribution (NBD) that directly deals with aggregation in the distribution of a species. The performance of these estimators was tested and compared against various distance-based estimators by both simulation and empirical data of three large-scale stem-mapped forests. Results showed that the NBD point-to-tree distance estimator has the best and most consistent performance across populations with vastly different spatial distributions. This estimator offers a simple, efficient and robust method for estimating density for empirical populations of plant species</abstract><cop>United States</cop><pub>John Wiley and Sons, Inc</pub><pmid>33448350</pmid><doi>10.1002/ecy.3143</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9853-6062</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9658 |
ispartof | Ecology (Durham), 2020-10, Vol.101 (10), p.1-9 |
issn | 0012-9658 1939-9170 |
language | eng |
recordid | cdi_proquest_journals_2447561505 |
source | Jstor Complete Legacy; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Bias Binomial distribution Computer Simulation Counting methods distance‐based methods Estimation Estimators Forests Geographical distribution nearest‐neighbor distance negative binomial distribution Plant populations Planting density plotless method Population Density population density estimator Population dynamics Robustness Spatial distribution spatial distribution of species Trees Wildlife conservation |
title | Distance-based methods for estimating density of nonrandomly distributed populations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distance-based%20methods%20for%20estimating%20density%20of%20nonrandomly%20distributed%20populations&rft.jtitle=Ecology%20(Durham)&rft.au=Shen,%20Guochun&rft.date=2020-10-01&rft.volume=101&rft.issue=10&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0012-9658&rft.eissn=1939-9170&rft_id=info:doi/10.1002/ecy.3143&rft_dat=%3Cjstor_proqu%3E26997987%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447561505&rft_id=info:pmid/33448350&rft_jstor_id=26997987&rfr_iscdi=true |