Distance-based methods for estimating density of nonrandomly distributed populations
Population density is the most basic ecological parameter for understanding population dynamics and biological conservation. Distance-based methods (or plotless methods) are considered as a more efficient but less robust approach than quadrat-based counting methods in estimating plant population den...
Gespeichert in:
Veröffentlicht in: | Ecology (Durham) 2020-10, Vol.101 (10), p.1-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Population density is the most basic ecological parameter for understanding population dynamics and biological conservation. Distance-based methods (or plotless methods) are considered as a more efficient but less robust approach than quadrat-based counting methods in estimating plant population density. The low robustness of distance-based methods mainly arises from the oversimplistic assumption of completely spatially random (CSR) distribution of a population in the conventional distance-based methods for estimating density of non-CSR populations in natural communities. In this study we derived two methods to improve on density estimation for plant populations of non-CSR distribution. The first method modified an existing composite estimator to correct for the long-recognized bias associated with that estimator. The second method was derived from the negative binomial distribution (NBD) that directly deals with aggregation in the distribution of a species. The performance of these estimators was tested and compared against various distance-based estimators by both simulation and empirical data of three large-scale stem-mapped forests. Results showed that the NBD point-to-tree distance estimator has the best and most consistent performance across populations with vastly different spatial distributions. This estimator offers a simple, efficient and robust method for estimating density for empirical populations of plant species |
---|---|
ISSN: | 0012-9658 1939-9170 |
DOI: | 10.1002/ecy.3143 |