A Thermal/RF Hybrid Energy Harvesting System With Rectifying-Combination and Improved Fractional-OCV MPPT Method
This paper presents a thermal/RF hybrid energy harvester. The energy harvesting system can scavenge energy from a thermoelectric generator (TEG) and a radio-frequency (RF) energy source simultaneously, and deliver the combined power to a single load. Two techniques are employed in the system to incr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2020-10, Vol.67 (10), p.3352-3363 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a thermal/RF hybrid energy harvester. The energy harvesting system can scavenge energy from a thermoelectric generator (TEG) and a radio-frequency (RF) energy source simultaneously, and deliver the combined power to a single load. Two techniques are employed in the system to increase the end-to-end efficiency; the rectifying-combination technique is proposed to eliminate the power loss associated with a dedicated AC-DC converter before the combiner and an improved fractional open-circuit voltage (FOCV) maximum power tracking (MPPT) is considered for a high average efficiency. A dynamic power path control extracts the maximum RF power from a cross-coupled differential rectifier, and also behaves as an AC/DC energy combiner. The thermal/RF harvester system achieves a measured peak end-to-end power conversion efficiency (PCE) of 63.4%. The shorter sampling time of 26ms every 16s for the proposed FOCV MPPT method reduces the long charging tail required to refresh the sampling capacitor, resulting in a an improved average efficiency of 82.2% for the thermal harvester. Fabricated in 0.18 \mu \text{m} CMOS technology, the prototype operates at a thermal input voltage ranging from 40 mV to 400 mV and an RF power from −18 dBm to −3 dBm and delivers an output voltage of 1.8 V. The total area of the fabricated circuit prototype is 1.22 mm 2 . |
---|---|
ISSN: | 1549-8328 1558-0806 |
DOI: | 10.1109/TCSI.2020.2982403 |