A Module-Based Plug-n-Play DC Microgrid With Fully Decentralized Control for IEEE Empower a Billion Lives Competition

In this article, a module-based plug-n-play (PnP) dc microgrid (MG) is introduced to help rural electrification. It provides a bottom-up way to form an MG with multilayer expandability and PnP feature. The module-based MG overcomes the drawback of conventional MG that requires central design and imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2021-02, Vol.36 (2), p.1764-1776
Hauptverfasser: Li, Dong, Ho, Carl Ngai Man
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a module-based plug-n-play (PnP) dc microgrid (MG) is introduced to help rural electrification. It provides a bottom-up way to form an MG with multilayer expandability and PnP feature. The module-based MG overcomes the drawback of conventional MG that requires central design and implementation which leads to high upfront cost and long lead time. It provides an organic way to form an MG that allows user to scale up the system as their demands grow, and fully utilize the existing resources. The proposed MG module is expandable on different layers that can meet the requirements of customers with different power consumption requirements. Each module, which contains PV generation and energy storage, can work as a stand-alone solar home system. Multiple modules can be connected as a group to scale up the local power supply. Groups can be interconnected through a public bus with gateway converter modules to form a community network, which can supply public usage and enable power exchange in a community range with relatively high distribution efficiency. The control of the proposed MG is in a fully decentralized manner such that central control and communication network can be omitted, which makes the system more user-friendly and highly robust. Detailed design, analysis, and implementation of the proposed PnP MG is provided in this article. Simulation and experimental results have been provided to verify the concept and analytical study.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2020.3009631