Equilibrium states for a class of skew products

We consider skew products on $M\times \mathbb{T}^{2}$, where $M$ is the two-sphere or the two-torus, which are partially hyperbolic and semi-conjugate to an Axiom A diffeomorphism. This class of dynamics includes the open sets of $\unicode[STIX]{x1D6FA}$-non-stable systems introduced by Abraham and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2020-11, Vol.40 (11), p.3030-3050
Hauptverfasser: CARVALHO, MARIA, PÉREZ, SEBASTIÁN A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider skew products on $M\times \mathbb{T}^{2}$, where $M$ is the two-sphere or the two-torus, which are partially hyperbolic and semi-conjugate to an Axiom A diffeomorphism. This class of dynamics includes the open sets of $\unicode[STIX]{x1D6FA}$-non-stable systems introduced by Abraham and Smale [Non-genericity of Ł-stability. Global Analysis (Proceedings of Symposia in Pure Mathematics, XIV (Berkeley 1968)). American Mathematical Society, Providence, RI, 1970, pp. 5–8.] and Shub [Topological Transitive Diffeomorphisms in$T^{4}$ (Lecture Notes in Mathematics, 206). Springer, Berlin, 1971, pp. 39–40]. We present sufficient conditions, both on the skew products and the potentials, for the existence and uniqueness of equilibrium states, and discuss their statistical stability.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2019.32