The evolution of flight in bats: a novel hypothesis
Bats (order Chiroptera) are the only mammals capable of powered flight, and this may be an important factor behind their rapid diversification into the over 1400 species that exist today – around a quarter of all mammalian species. Though flight in bats has been extensively studied, the evolutionary...
Gespeichert in:
Veröffentlicht in: | Mammal review 2020-10, Vol.50 (4), p.426-439 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bats (order Chiroptera) are the only mammals capable of powered flight, and this may be an important factor behind their rapid diversification into the over 1400 species that exist today – around a quarter of all mammalian species. Though flight in bats has been extensively studied, the evolutionary history of the ability to fly in the chiropterans remains unclear.
We provide an updated synthesis of current understanding of the mechanics of flight in bats (from skeleton to metabolism), its relation to echolocation, and where previously articulated evolutionary hypotheses for the development of flight in bats stand following recent empirical advances. We consider the gliding model, and the echolocation‐first, flight‐first, tandem development, and diurnal frugivore hypotheses. In the light of the recently published description of the web‐winged dinosaur Ambopteryx longibrachium, we draw together all the current evidence into a novel hypothesis.
We present the interdigital webbing hypothesis: the ancestral bat exhibited interdigital webbing prior to powered flight ability, and the Yangochiroptera, Pteropodidae, and Rhinolophoidea evolved into their current forms along parallel trajectories from this common ancestor. Thus, we suggest that powered flight may have evolved multiple times within the Chiroptera and that similarity in wing morphology in different lineages is driven by convergence from a common ancestor with interdigital webbing.
Reviewing the evolution of flight in bats: How do bats fly? From skeleton to metabolism. There are several urrent hypotheses for the evolution of the relationship between flight and echolocation. Here we present the Interdigital Webbing Hypothesis: the hypothetical common ancestor of modern bats had webbed fingers. Modern bats evolved along three trajectories from this common ancestor, developing different relationships between flight and echolocation, but all developing the characteristic bat wing. |
---|---|
ISSN: | 0305-1838 1365-2907 |
DOI: | 10.1111/mam.12211 |