Local regularity for quasi-linear parabolic equations in non-divergence form
We consider viscosity solutions to non-homogeneous degenerate and singular parabolic equations of the p-Laplacian type and in non-divergence form. We provide local Hölder and Lipschitz estimates for the solutions. In the degenerate case, we prove the Hölder regularity of the gradient. Our study is b...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2020-10, Vol.199, p.112051, Article 112051 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider viscosity solutions to non-homogeneous degenerate and singular parabolic equations of the p-Laplacian type and in non-divergence form. We provide local Hölder and Lipschitz estimates for the solutions. In the degenerate case, we prove the Hölder regularity of the gradient. Our study is based on a combination of the method of alternatives and the improvement of flatness estimates. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2020.112051 |