Fractal breakage of porous carbonate sand particles: Microstructures and mechanisms
In situ, three-dimensional (3D) characterizations of particle breakage in porous carbonate sands are presented, for the first time, with synchrotron-based micro computed tomography. Evolution of grain-scale characteristics are identified and quantified via elaborate image processing and topology ana...
Gespeichert in:
Veröffentlicht in: | Powder technology 2020-03, Vol.363 (C), p.112-121 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In situ, three-dimensional (3D) characterizations of particle breakage in porous carbonate sands are presented, for the first time, with synchrotron-based micro computed tomography. Evolution of grain-scale characteristics are identified and quantified via elaborate image processing and topology analyses. The sequential 3D images reveal distinctly different fracture mechanisms for carbonate sands from silica sands. The angular shape of carbonate sand particles facilitates bending fracture, and particles with a lower sphericity and a higher porosity are more prone to break. 3D crack networks extracted from fractured particles imply considerable cleavage along initial pores. The fractal dimension of crack networks increases with external loading due to crack branching via cleavage. The resultant fragment size distribution also appears fractal and the fractal feature is valid down to the breakage limit of calcium carbonate. Crack propagation along the initial pores reduces the energy barrier for particle breakage and thus fracture strength of particles.
[Display omitted]
•First in situ characterization of particle breakage in carbonate sands.•Particle shape and intra-granular porosity affects breakage strength.•Fractal dimension of crack networks increases with particle breakage extent.•Cleavage along initial pores leads to crack branching. |
---|---|
ISSN: | 0032-5910 1873-328X |
DOI: | 10.1016/j.powtec.2020.01.007 |