Investigating the Combined Effects of Inherent and Stress-Induced Anisotropy on the Mechanical Behavior of Granular Materials Using Three-Dimensional Discrete Element Method

The three-dimensional discrete element method (DEM) was employed to investigate the combined effects of inherent and stress-induced anisotropy of granular materials. The particles were modeled following real particle shapes. Both isotropic and inherently anisotropic specimens were prepared, and then...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-16
Hauptverfasser: Ling, Jianming, Zhang, Lei, Qian, Jinsong, Chen, Xinran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The three-dimensional discrete element method (DEM) was employed to investigate the combined effects of inherent and stress-induced anisotropy of granular materials. The particles were modeled following real particle shapes. Both isotropic and inherently anisotropic specimens were prepared, and then true triaxial numerical tests were conducted using different intermediate principle stress ratios (b). The results indicate that the oriented particles in the anisotropic specimens form strong contacts in their long axis direction in the early stages of shearing, which restrains the contraction of the specimens. As the strain increases, the oriented particles start to rotate and slide, which results in shorter contraction stages and fewer number of interparticle contacts with peak values compared to the isotropic specimens. In addition, the increase in b values aggravates the rotating and sliding of particles in the inherently anisotropic specimens and restrains the contraction of the granular and the increase of contact forces. As a result, the inherent anisotropy reduces the effects of stress-induced anisotropy on the mechanical behavior of granular materials.
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/7841824