A Coded Compressed Sensing Scheme for Unsourced Multiple Access

This article introduces a novel scheme, termed coded compressed sensing, for unsourced multiple-access communication. The proposed divide-and-conquer approach leverages recent advances in compressed sensing and forward error correction to produce a novel uncoordinated access paradigm, along with a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2020-10, Vol.66 (10), p.6509-6533
Hauptverfasser: Amalladinne, Vamsi K., Chamberland, Jean-Francois, Narayanan, Krishna R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article introduces a novel scheme, termed coded compressed sensing, for unsourced multiple-access communication. The proposed divide-and-conquer approach leverages recent advances in compressed sensing and forward error correction to produce a novel uncoordinated access paradigm, along with a computationally efficient decoding algorithm. Within this framework, every active device partitions its data into several sub-blocks and, subsequently, adds redundancy using a systematic linear block code. Compressed sensing techniques are then employed to recover sub-blocks up to a permutation of their order, and the original messages are obtained by stitching fragments together using a tree-based algorithm. The error probability and computational complexity of this access paradigm are characterized. An optimization framework, which exploits the tradeoff between performance and computational complexity, is developed to assign parity-check bits to each sub-block. In addition, two emblematic parity bit allocation strategies are examined and their performances are analyzed in the limit as the number of active users and their corresponding payloads tend to infinity. The number of channel uses needed and the computational complexity associated with these allocation strategies are established for various scaling regimes. Numerical results demonstrate that coded compressed sensing outperforms other existing practical access strategies over a range of operational scenarios.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2020.3012948