Efficient Parametric Yield Estimation Over Multiple Process Corners via Bayesian Inference Based on Bernoulli Distribution
Parametric yield estimation over multiple process corners plays an important role in robust circuit design. In this article, we propose a novel Bayesian inference method based on Bernoulli distribution (BI-BD) to efficiently estimate the multicorner yields for binary output circuit. The key idea is...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2020-10, Vol.39 (10), p.3144-3148 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Parametric yield estimation over multiple process corners plays an important role in robust circuit design. In this article, we propose a novel Bayesian inference method based on Bernoulli distribution (BI-BD) to efficiently estimate the multicorner yields for binary output circuit. The key idea is to encode the circuit performance correlation among different corners as our prior knowledge. Consequently, after combining a few simulation samples, the yield estimation over all corners can be calibrated via Bayesian inference based on iterative reweighted least squares (IRLS) and expectation maximization (EM). A circuit example demonstrates that the proposed BI-BD method can achieve up to 2.0\times cost reduction over the conventional Monte Carlo method without surrendering any accuracy. |
---|---|
ISSN: | 0278-0070 1937-4151 |
DOI: | 10.1109/TCAD.2019.2940682 |