Inverse scattering transforms and soliton solutions of nonlocal reverse‐space nonlinear Schrödinger hierarchies

The aim of the paper is to construct nonlocal reverse‐space nonlinear Schrödinger (NLS) hierarchies through nonlocal group reductions of eigenvalue problems and generate their inverse scattering transforms and soliton solutions. The inverse scattering problems are formulated by Riemann‐Hilbert probl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in applied mathematics (Cambridge) 2020-10, Vol.145 (3), p.563-585
Hauptverfasser: Ma, Wen‐Xiu, Huang, Yehui, Wang, Fudong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of the paper is to construct nonlocal reverse‐space nonlinear Schrödinger (NLS) hierarchies through nonlocal group reductions of eigenvalue problems and generate their inverse scattering transforms and soliton solutions. The inverse scattering problems are formulated by Riemann‐Hilbert problems which determine generalized matrix Jost eigenfunctions. The Sokhotski‐Plemelj formula is used to transform the Riemann‐Hilbert problems into Gelfand‐Levitan‐Marchenko type integral equations. A solution formulation to special Riemann‐Hilbert problems with the identity jump matrix, corresponding to the reflectionless transforms, is presented and applied to N‐soliton solutions of the nonlocal NLS hierarchies.
ISSN:0022-2526
1467-9590
DOI:10.1111/sapm.12329