67‐1: Distinguished Paper: Efficient Multi‐Quality Super Resolution Using a Deep Convolutional Neural Network for an FPGA Implementation
We propose an efficient deep convolutional neural network for a super‐resolution which is capable of multiple‐quality input, by analyzing the input quality and choosing appropriate features automatically. To implement the network in an FPGA and an ASIC, we employ a network trimming technique to comp...
Gespeichert in:
Veröffentlicht in: | SID International Symposium Digest of technical papers 2020-08, Vol.51 (1), p.993-996 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose an efficient deep convolutional neural network for a super‐resolution which is capable of multiple‐quality input, by analyzing the input quality and choosing appropriate features automatically. To implement the network in an FPGA and an ASIC, we employ a network trimming technique to compress the neural network. |
---|---|
ISSN: | 0097-966X 2168-0159 |
DOI: | 10.1002/sdtp.14039 |